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PARALLELISM IN SERIAL PIPELINE
PROCESSING

CROSS REFERENCE TO RELATED
APPLICATIONS

This application claims priority to U.S. Provisional Patent
No. 63/011,002 filed Apr. 16, 2020 which 1s incorporated in
its entirety.

FIELD OF THE DISCLOSURE

The overall field of this mvention relates generally to
employing architecture, programming models, and Applica-
tion Programming Interface (API) for serial data processing,
and 1n particular for serial processing pipelines. The dis-
closed embodiments relate to a system and method for an
architecture that allows concurrent processing ol multiple
stages 1n a serial processing pipeline. In concert with other
techniques, including hardware accelerations and alternative
methods for accessing memory, parallelism improves per-
formance 1 dimensions of latency, throughput, and CPU
utilization.

BACKGROUND

This paper describes an architecture that allows concur-
rent processing ol multiple stages in a serial processing
pipeline. In concert with other techniques, including hard-
ware accelerations and alternative methods for accessing
memory, parallelism improves performance 1n dimensions
of latency, throughput, and CPU utilization. Parallelism has
long been exploited as a means to improve processing
performance 1n different areas of computing. For instance, in
networking, techniques such as Receive Side Scaling (RSS)
parallelize packet processing across diflerent CPUs. Those
mechanisms employ horizontal parallelism to process pack-
ets concurrently, however processing for each packet
remains serialized. For instance, a QUIC/IPv4 packet con-
s1sts of a stack of Ethernet, IPv4, UDP, and QUIC headers—
the corresponding protocol layers are processed serially for
cach packet. Vertical parallelism allows concurrent process-
ing of diflerent layers of a packet thereby reducing latency
and 1ncreasing throughput. The benefits of vertical parallel-
1sm become more pronounced with increased use of encap-
sulation, extension headers, Type Length Value lists (TLVs),
and Deep Packet Inspection (DPI). Network protocol pro-
cessing 1s an instance of a serial processing pipeline. A serial
processing pipeline 1s characterized by a pipeline composed
of some number of stages that are expected to be processed
serially where one stage must complete 1ts processing before
moving to the next one. A serial processing pipeline 1s
parallelized by running its stages 1n parallel. A threading and
dependency model 1s required to facilitate this. This paper
describes such a model for parallelizing serial pipeline
processing. The fundamental elements of the model are data
objects, metadata, external data, threads, and dependencies.
Data objects are units of data processed by a serial process-
ing pipeline. Metadata 1s data about an object that 1s accu-
mulated as an object 1s processed. External data provides
configuration and state that 1s shared amongst processing
clements. Threads are units of execution created for each
stage 1 a pipeline. Dependencies define dependencies
between threads. Given a threading and dependency model,
a design for parallelizing a serial processing pipeline of a
network stack can be articulated. Packet processing begins
with one of the threads such as the initial thread to process
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2

the first protocol layer. Each protocol layer thread parses the
corresponding protocol headers and starts a thread to process

the next layer. Wait points and resolve points are set 1n the
code paths to handle dependencies between stages. Once
processing for all protocol layers has been started, the initial
thread waits for all the threads to complete and then per-
forms any necessary serial completion processing.

SUMMARY

The embodiments 1n the present invention are directed to
a system including one or more computers and one or more
storage devices on which are stored instructions that are
operable, the system including one or more memory and
address formats, one or more hardware schedulers, external
memory, CPU set shared memory shared amongst a coop-
erative set of CPUs, and CPU local memory, and one or
more accelerators, when executed by the one or more
computers, to cause the one or more computers to perform
operations 1including utilizing a software programming
model and API to program serial data processing including
primitives for parallelism and synchronization for serial
processing pipelines whereby the software programming
model and the API employ lightweight micro threading and
synchronization mechanisms to construct horizontal pipe-
lines and wvertical pipelines with concurrent processing
whereby the API 1s targeted to a domain specific space of
serial pipeline processing and serial data processing for
hardware acceleration, executing an operation for horizontal
parallelization, vertical parallelization, or hybrid paralleliza-
tion of a serial processing pipeline to produce materialized
data objects, the operation including, executing the opera-
tion as a vertical parallel operation whereby stages of the
same serial processing pipeline processing a single data
object execute concurrently, executing the operation as a
hybrid parallel operation, the hybrid parallel operation uti-
lizing vertical and horizontal parallelism which work 1n
concert whereby within each horizontal pipeline, vertical
parallelism 1s applied to processing of the data objects,
analyzing programming language instructions associated
with the serial processing pipeline to determine a type or
types of parallel operations to be applied, whereby the
maternalized data objects are accessed during execution of a
program corresponding to the programming language
istructions associated with the serial processing pipeline,
augmenting compilers to analyze the program being com-
piled to optimize and instantiate a compiled executable
based on the sernal processing pipeline defined 1n program
source code, utilizing a threading model including process-
ing elements and procedures of the vertical pipelines and the
horizontal pipelines, utilizing programmable threads as a
unit of execution that implements one stage in a processing
pipeline, utilizing a programming language and model to
program the threads, utilizing thread sets that are groups of
threads that define 1nstances of the vertical pipelines, utiliz-
ing datapaths, each of which comprises a group of thread
sets, whereby each thread set defines an instance of a
horizontal pipeline 1n a datapath and processes one data
object at a time, utilizing the datapaths and the thread sets to
provide hybrid parallelism whereby the horizontal parallel-
1sm 1s provided by different thread sets of the datapath, and
the vertical parallelism 1s provided by the threads within a
thread set, creating a number of threads in a thread set,
whereby the number of threads implement vertical parallel-
ism within the thread set, assigning one or more worker
threads to the thread set, whereby the one or more worker
threads are available and not currently processing a pipeline
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stage, or are busy and processing a pipeline stage, whereby
worker threads for a thread set are created at initialization,
attaching non-worker threads to a thread set, where 1n
response to the attachment the threads take on characteristics
of the busy worker threads in that the threads are configured
to participate in processing stages of the serial processing
pipeline and 1n dependency resolution including waiting on
and resolving dependencies, whereby detaching an attached
thread removes the thread from an ordered list whereby the
thread 1s reattachable, maintaining the set of busy threads in
the ordered list for each thread set, whereby the ordered list
of threads within a thread set establishes upstream and
downstream relationships between busy threads in a thread
set, whereby when a thread starts processing a pipeline stage
and becomes busy, 1t 1s inserted at a tail of the ordered list,
closing of a thread set whereby no additional worker threads
are scheduled for the thread set and no additional non-
worker threads are attached until all the threads 1n the thread
set complete processing and the thread set 1s reset, creating
a number of thread sets 1n a datapath, whereby the number
of thread sets implement horizontal parallelism, and threads
within a thread set implement vertical parallelism, assigning,
the one or more thread sets to the datapath, whereby the one
or more thread sets are available and not currently process-
ing a data object, or are busy and processing a data object,
whereby thread sets for a datapath are created at 1nitializa-
tion, maintaining the set of busy thread sets 1n an ordered list
for each datapath, whereby the ordered list of thread sets
within a datapath establishes upstream and downstream
relationships between busy thread sets in a datapath,
whereby when a thread set starts processing a data object
and becomes busy, 1t 1s 1nserted at a tail of the ordered list,
THE system further including dependency synchronization,
the system causing the one or more computers to perform
turther operations including, utilizing dependencies that are
processing dependencies manifested between threads, uti-
lizing dependency synchronization, the dependency syn-
chronization including providing a resolve point and wait
point whereby a resolve point 1s a point in a code path of a
processing stage at which processing has been done to
satisfy a dependency of a later stage, and a wait point 1s a
point 1 the code path of a processing stage at which
execution cannot proceed until a dependency 1n an earlier
stage has been resolved, whereby wait and resolve primi-
tives are implemented in the API to synchronize between
wait and resolve points, the system further including depen-
dency synchronization among threads within a thread set,
the system causing the one or more computers to perform
turther operations including utilizing 1ntra thread set depen-
dency resolution operations for dependencies that are of
interest within a single thread set processing pipeline, main-
taining running state for a thread set to track dependencies
between dependency watcher, waiter, and blocker threads,
whereby watcher threads are threads that may wait on a
dependency, waiter threads are watcher threads that are
actively waiting on a dependency, and blocker threads are
threads that block a dependency and must resolve the
dependency belore downstream waiter threads can proceed,
whereby the ordered list of the thread set determines down-
stream and upstream relationships between the watcher,
blocker, and waiter threads which are needed for the depen-
dency resolution operations, utilizing a dependency resolu-
tion signaling procedure, whereby when a thread resolves a
dependency or has a dependency resolved for which 1t does
not block, the dependency 1s resolved for a next thread in the
ordered list of the thread set, whereby i1 the next thread is
not a blocker of the dependency then the dependency 1s
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resolved for 1ts next thread 1n the thread list, adding a thread
to the ordered list whereby an 1nitial set of resolved depen-
dencies for the thread 1s determined as the set of resolved
dependencies for a previous thread in the thread set and for
which the previous thread 1s not a blocker, removing a thread
when completed whereby the thread 1s removed from the
ordered list, whereby when a thread 1s terminated, any
unresolved dependencies that the thread blocks are implic-
itly resolved and the thread reset to its initial state, the
system further including dependency synchronization
between thread sets, the system causing the one or more
computers to perform further operations including, utilizing
inter thread set dependency resolution operations for depen-
dencies that are propagated between the threads of difierent
thread sets to synchronize processing between horizontal
processing pipelines, utilizing configuration of propagated
dependencies, non-propagated dependencies, early propa-
gated dependencies, and non-blocked early propagated
dependencies for a datapath, whereby propagated dependen-
cies 1ndicate dependencies for which their resolution 1is
propagated between thread sets, non-propagated dependen-
cies mdicate dependencies for which their resolution 1s not
propagated between thread sets, early propagated dependen-
cies indicate dependencies for which their resolutions are
propagated between thread sets before an origin thread set 1s
closed but after at least one thread has resolved the depen-
dency, and non-blocked early propagated dependencies 1ndi-
cate dependencies for which their resolution 1s propagated
between threads sets when the dependency 1s resolved for a
first thread 1n a thread set, utilizing methods to propagate a
dependency resolution for a propagated dependency
between thread sets whereby when a terminating thread of a
thread set that has been closed resolves a dependency or has
a dependency resolved and 1s not a blocker for the depen-
dency, the dependency is then resolved for the first thread 1n
a next thread set 1n the ordered list of the thread sets for a
datapath, utilizing methods to propagate a dependency reso-
lution for an early propagated dependency between thread
sets whereby when at least one thread of a thread set resolves
a dependency, the dependency 1s then resolved for the first
thread 1n the next thread set in the ordered list of thread sets
for a datapath, utilizing methods to propagate a dependency
resolution for a non-blocked early propagated dependency
between thread sets whereby when a dependency 1s resolved
for the first thread in a thread set, the dependency is then
resolved for the first thread in the next thread set in the
ordered list of thread sets for a datapath, the system further
including dependency channels, the system causing the one
or more computers to perform further operations including
utilizing dependency channels that 1s a method to group
together data objects that belong to a same logical flow and
in order processing of objects 1s maintained within the group
maintaining an order list of thread sets for each dependency
channel, maintaining ordered processing semantics and syn-
chronization among the thread sets of a channel by one or
more channel dependencies whereby the channel dependen-
cies are declared in datapath configuration and are propa-
gated dependencies, whereby the datapath 1s comprised of
multiple sets of dependency channels where each has its
own logically independent instance of the channel depen-
dencies, joining, by a thread set to a dependency channel by
an operation, whereby an argument specifies which channel
to join, whereby when a thread set 1s joined to a dependency
channel 1t 1s 1nserted at a tail of the ordered list of thread sets
for the dependency channel and i1s joined for a remaining
lifetime of the thread set for processing a data object,
whereby a thread set 1s joinable to more than one depen-




US 12,026,546 B2

S

dency channel 1t multiple dependency channel sets are
supported by the datapath, the system further including
procedures for thread scheduling that schedules running of
threads 1n a pipeline, whereby each thread includes a work
queue, whereby a work item 1s configured to be placed on
the work queue that indicates a function to be performed by
the thread and a reference to the data object and a reference
to a specific layer to be processed, an available thread
dequeuing a first 1item 1n the work queue when there 1s a
work 1tem 1n the work queue, and in response to the
dequeuing, performing requested processing by calling an
appropriate function, waiting on upstream threads to com-
plete whereby a thread invokes a primitive to wait for all
upstream threads in the pipeline to complete and will block
until all the upstream threads are complete, killing all
downstream threads 1n a pipeline whereby a thread invokes
a primitive to force all threads downstream in the pipeline to
terminate and reset to their 1mitial state and become avail-
able, the system further including a thread scheduler for a
thread set that performs top function scheduling including,
utilizing top function scheduling whereby an iput thread,
the top function thread, for a thread set runs 1n an event loop
for processing a work queue that contains work items
describing objects for the thread set to process, the top
function thread dequeuing a first item in the work queue
when there 1s a work 1tem 1n the work queue, 1n response to
the dequeuing, scheduling one or more worker threads to
perform processing of various layers of the data object
indicated 1n the dequeued work 1tem, determining a thread
1s not available for scheduling, in response to determining
that no threads are available for scheduling the thread
scheduler blocking until a thread is available, the system
turther including cascade scheduling, the system causing the
one or more computers to perform further operations includ-
ing, processing, by a last thread 1n an ordered list of a thread
set, the data object to determine a next layer that i1s to be
processed and starting a next worker thread 1n the thread set
to process the next layer, the system further including
procedures for thread set scheduling that schedules thread
sets 1n a datapath to process data objects, the system causing
the one or more computers to perform further operations
including utilizing one or more input scheduler functions
that serve as the schedulers of thread sets of the datapath,
whereby an mput scheduler function maintains a queue of
data objects to process inputting a data object into the
datapath, whereby an nput scheduler function of the mput
scheduler functions attempts to select a thread set among a
set ol available thread sets, whereby 1f a thread set 1s
available it 1s reserved as busy and it 1s inserted at a tail of
a ordered list of the busy thread sets for the datapath and a
top function for the thread set 1s run, whereby 11 no thread
sets are available, the scheduler queues a work item for the
data object 1n a datapath data object work queue, whereby
when a thread set completes 1ts processing and becomes
available and there 1s an item on the work queue, the 1input
scheduler dequeuing a work 1tem from the datapath’s work
queue and proceeding to start the available thread set to
process the object described 1n the work item, the system
causing the one or more computers to perform further
operations including utilizing block level parallelism as a
specialized form of vertical parallelism for fine grained
parallelization of independent blocks of code within a code
path, implementing a fork operation to create one or more
ephemeral threads such that one parallel code block runs 1n
an original thread, and other parallel code blocks run in the
ephemeral threads, implementing a join operation whereby
the ephemeral threads execute their code blocks and then
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exit, and the original thread executes 1ts code block and then
performs the join operation to wait for the ephemeral threads
to exit, utilizing chained transform hardware accelerators
whereby a chain of accelerators 1s dynamically programmed
to operate 1n sequence on a data object, whereby the data
object and output from transforms are comprised of blocks
of data that are operated on such the output data block of one
transform accelerator 1s the mput data block of a next
transform accelerator in the chain, whereby diflerent blocks
of the same data object are processed in parallel by the
different transform accelerators in the sequence, and
whereby the transform accelerators may concurrently pro-
cess data blocks from different data objects as long as
properly 1n order processing of the data in each data object
1s maintained, transform processing in-line with streaming
datapath mput functions, or a desernialization function 1in
networking, with one or more transforms being processed in
a loop that 1s employed to perform incremental transform
processing on blocks of bytes of a data object as they
become available. In each iteration of the loop, a Tunction 1s
called to check i1f a block of data of some size 1s available,
the function returns true if a block 1s available and returns
false 11 an end of the data object 1s reached, the function will
block 1f a data block 1s not available and an end of the data
object 1s not yet reached. A loop proceeds and processes
blocks of data as they become available, where for each
block one or more transforms operate it, whereby when the
end of the data object 1s reached, as indicated by the check
function returning false, the loop terminates and any residual
bytes of the data object are operated on by the transforms,
the system further including a programmable parser having
protocol nodes, parse nodes, and protocol tables, the proto-
col node providing properties and functions needed to parse
one protocol 1n a parse graph to proceed to a next protocol
in the parse graph, the protocol node having functions that
are implemented per a specific protocol to return a length of
a protocol layer or header of a current protocol layer and
return a protocol type of the next layer, the protocol table
returning the next parse node 1n the protocol graph based on
input of the protocol type of the next layer, whereby the
parse node 1s an instantiation of one node 1n the parse graph
of a parser, the parse node allowing functions to extract
metadata from a protocol header and save it 1n a metadata
memory, and to perform protocol processing, the system
further including a parser engine that drives parsing, and a
parser compiler for creating a dependency graph and popu-
lating wait points and resolve points, the system causing the
one or more computers to perform further operations includ-
ing accelerating by implementing a programmable parser 1n
hardware, the programmable parser identifying a protocol
layer 1n a packet, and 1n response to an 1dentification, parsing
the protocol layer and scheduling threads to perform per
layer processing, the system further including computation
of an Internet checksum, or one’s complement checksum
with respect to a senial processing pipeline, the system
causing the one or more computers to perform further
operations including, utilizing a method to provide to a
thread the one’s complement checksum of all words of the
data corresponding to a protocol layer, utilizing a method to
provide to a thread the one’s complement checksum of all
words of data corresponding to all words preceding a
protocol layer, utilizing a method 1n a thread processing of
a protocol layer to set or validate a protocol checksum,
without additional checksum computation, using the pro-
vided one’s complement sum of all words 1n the data object,
the one’s complement sum of all words of the data corre-
sponding to a protocol layer, and the one’s complement sum
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of all words corresponding to all words preceding a layer,
whereby some embodiments the system i1s for network
processing, whereby data objects are packets or protocol
data units and processing layers 1n a data object are protocol
layers of networking packets.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the present disclosure are described in
detail below with reference to the following drawings. These
and other features, aspects, and advantages of the present
disclosure will become better understood with regard to the
tollowing description, appended claims, and accompanying
drawings. The drawings described herein are for illustrative
purposes only of selected embodiments and not all possible
implementations and are not intended to limit the scope of
the present disclosure. Also, the drawings included herein
are considered by the applicant to be imnformal.

FIG. 1 illustrates an embodiment of a Parallel Pipeline
Processing System of the present invention.

FIG. 2 1llustrates an embodiment of the processing flow
for processing eight data objects using horizontal parallelism
and vertical parallelism.

FI1G. 3 illustrates the concept of multi-queue parallelism.

FIG. 4 1llustrates an embodiment of the processing flow
for block level parallelism.

FIG. 5 illustrates an embodiment of the processing flow
for processing twenty data objects using hybrid parallelism.

FI1G. 6 1llustrates an embodiment of the processing flow of
unconstrained constrained vertical parallelism.

FIG. 7 illustrates an embodiment of top function sched-
uling.

FIG. 8 1llustrates an embodiment of cascade scheduling.

FIG. 9 1s an example of parallelized processing for an
object 1n a four-stage pipeline and how dependencies are
resolved to advance processing.

FIG. 10 illustrates an embodiment of the operation of
dependency processing.

FIG. 11 1llustrates a diagram of a four state serial pro-
cessing pipeline that might correspond to the protocol layer
processing of a QUIC/IPv4 over Ethernet packet.

FIG. 12 1illustrates a protocol parse graph containing a
number of common networking protocols.

FIG. 13 illustrates an embodiment of a flowchart for a

method for processing for a protocol layer with vertical
parallelism.

FI1G. 14 1llustrates an embodiment of a process for extract-
ing the length of a protocol layer header that includes a
header length.

FIG. 13 1llustrates an embodiment of a process for the
determination of the next protocol layer type 1f a protocol
header contains a next protocol field.

FIG. 16 illustrates an embodiment of a process for the
determination of the protocol type if a protocol layer header
1s self-identifying.

FIG. 17 illustrates XDP with vertical parallelism.

FIG. 18 illustrates an example of a PANDA parser and
relationships between related structures.

FIG. 19 illustrates an example of a PANDA parser with a
TLV parse node for IPv6 Hop-by-Hop Options.

FI1G. 20 illustrates an example of a PANDA parser with
flags-field nodes for GRE flags.

FIG. 21 illustrates a domain specific architecture for
parallelism 1n serial pipeline processing for networking.

FI1G. 22 illustrates transform chaining.
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FIG. 23 illustrates an embodiment of a parse graph that
contains sub-variants of IPv4, IPv6, UDP, and TCP that

would be matched by a TCAM 1n a protocol dispatch
function.

DETAILED DESCRIPTION

In the Summary above and in this Detailed Description,
and the claims below, and 1n the accompanying drawings,
reference 1s made to particular features (including method
steps) of the mnvention. It 1s to be understood that the
disclosure of the mvention 1n this specification includes all
possible combinations of such particular features. For
example, where a particular feature 1s disclosed in the
context of a particular aspect or embodiment of the inven-
tion, or a particular claim, that feature can also be used, to
the extent possible, in combination with and/or in the
context of other particular aspects and embodiments of the
invention, and 1n the mvention generally.

The term “‘comprises” and grammatical equivalents
thereol are used herein to mean that other components,
ingredients, and steps, among others, are optionally present.
For example, an article “comprising” (or “which com-
prises’’) components A, B, and C can consist of (1.e., contain
only) components A, B, and C, or can contain not only
components A, B, and C but also contain one or more other
components.

Where reference 1s made herein to a method comprising,
two or more defined steps, the defined steps can be carried
out 1n any order or simultaneously (except where the context
excludes that possibility), and the method can include one or
more other steps which are carried out before any of the
defined steps, between two of the defined steps, or after all
the defined steps (except where the context excludes that
possibility).

Certain terminology and derivations thereof may be used
in the following description for convenience in reference
only, and will not be limiting. For example, words such as
“upward,” “downward,” “left,” and “right” would refer to
directions 1n the drawings to which reference 1s made unless
otherwise stated. Similarly, words such as “mward” and
“outward” would refer to directions toward and away from,
respectively, the geometric center of a device or area and
designated parts thereof. References in the singular tense
include the plural, and vice versa, unless otherwise noted.

The present disclosure recognizes the unsolved need for a
system and method that provides parallelization to serial
pipeline processing with one or more threading and syn-
chronization models. A serial processing pipeline 1s a set of
processing elements connected 1n series. where the output of
one element 1s the input of another. The salient characteristic
of serial processing pipelines i1s that the externally visible
ellect of processing a data object 1s that all of the elements
of the pipeline processed the element in serial order. Data
object or packet processing starts with a dispatcher creating
an 1nitial thread to process the first processing layer. Each
processing layer thread parses the corresponding headers to
identify the next processing layer and then starts a thread to
process the next layer. The threads may execute 1n parallel.
Wait points and resolve points are set 1n the code paths to
handle dependencies between threads. Once processing for
all processing layers has been dispatched, the dispatcher
waits for all the threads to complete. An action may be
returned from the processing pipeline and processed accord-
ingly to complete data object processing. The data object
processing may be adapted to a wide variety of systems and
applications that employ processing layers.
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In networking, the system and method for the paralleliza-
tion of serial pipeline processing may be applied to paral-
lelize the protocol processing done for a data object, the data
object defined as unit of data or packet that 1s routed between
an origin and a destination on the Internet or any other data
object or packet-switched network. One or more channels
may be utilized by the system that are established between
two computing devices via a network. In some embodi-
ments, the computing devices may have one or more net-
work 1nterface devices and one or more network ports which
share the same processing pipeline. Additionally or alterna-
tively, the resources of the computing device may be shared
by multiple hosts as well as by multiple operating systems
(c.g., a main operating system and one or more virtual
operating systems) on a single given host. In this embodi-
ment, the network interface device may be configured so that
cach port appears to the host as though 1t was a separate
computing device with 1ts own processing hardware so that
cach operating system on each host may interact with the
computing device independently.

The network may have a plurality of protocol stacks
comprised of a plurality of protocol layers, such as a link
layer as the first layer, a network layer as the second layer
above the link layer, a transport layer above the network,
layers that are encapsulated at the transport layer (which 1n
various examples may be a QUIC transport layer) and in
some embodiments an application layer above the transport
layer.

The transport layer may provide end-to-end communica-
tion between different hosts, including use by the processes
of the system. FEach transport layer channel may be estab-
lished via network layer channels between one of computing
devices and a router, or between pairs of routers, which are
established via link layer channels within the individual
networks. Channels may be unidirectional channels or bidi-
rectional channels.

The network layer may serve as a connectionless service
that 1s typically used to route data and information between
network devices. The network layer may provide routing,
such as communication between different individual por-
tions of the network via routers or other devices.

The protocol layers in one example are provided in
accordance with a UDP/IP suite utilizing the QUIC transport
layer protocol utilizing QUIC/IPv4 over an Ethernet data
object or frame. In this embodiment, data structures gener-
ally include an FEthernet header, an IPv4 header, a UDP
header, and a body defined by a QUIC header and payload.

However, this 1s non limiting and 1n some embodiments
the system may be adapted for use with other networking,
protocols, such as but not limited to TCP, SCTP, UDP, and
DCCP, and other applications to improve networking per-
formance. In other embodiments, aspects of the present
invention may be applied 1n any system that implements a
serial pipeline processing or serialized processing of data.

FIG. 1 1llustrates an embodiment of a Parallel Pipeline
Processing System 100 having a computing device 110.
Computing device 110 may be a personal computer; how-
ever this 1s non-limiting and may be any computing device
such as a phone tablet, television, laptop computer, gaming
system, wearable device electronic glasses, server device, or
any other multifunctional device known by those of ordinary
skill in the art. Computing device 110 may have any number
of hardware components configured to perform operations
from software. FIG. 21 further 1llustrates a domain specific
architecture for parallelism in serial pipeline processing for
networking and will be described later 1n the description.
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Computing device 110 may have one or more processors
120 (e.g., one of a plurality of central processing units,
CPUs, or other processors connected to hardware of com-
puting device 110), mput output controller 130, network
interface 140, and a storage 150 communicatively connected
between one another. Input/output controller 130 receives
inputs from a user of computing device 110 via one or more
input devices 132 and displays outputs to the user via one or
more output devices 134.

Network interface 140 1s a wired or wireless communi-
cation interface for transmitting and recerving information
to/from other network capable devices over wired or wire-
less communication links. Network interface 140 may be,
for example, but not limited to a wired ethernet interface,
cellular network intertace, Wi-Fi1, or Wi-F1 Max. Network
interface 140 may have one or more hardware components
such as a network interface card (NIC) configured to send
and receive packets over a physical network link. The
network interface card may be a modular unit implemented
on a printed circuit board that 1s coupled to computing
device 110.

Processors 120 may execute soltware operations sup-
ported by computing device 110. Processors may be a single
processing unit or multiple processing units 1n computing
device 110 or distributed across multiple devices. Processors
120 may be communicatively coupled to other components
by the use of a bus, such as a PCI bus or SCSI bus, and may
communicate with a hardware controller for devices, such as
an output device 134. Processors 120 may have access to a
storage 150. Processors 120 may be coupled or otherwise
connected to one or more hardware accelerators 147, co-
processors 149, and TCAMs (Ternary Content Addressable
Memory) 151.

Storage 150 may include one or more of various hardware
devices for volatile and non-volatile storage and may
include both read-only and writable memory. For example,
storage 150 may comprise random access memory (RAM),
CPU registers, read-only memory (ROM), and writable
non-volatile memory, such as flash memory, hard drives,
floppy disks, CDs, DVDs, magnetic storage devices, tape
drives, device buflers, and so forth.

The software elements of computing device 110 that are
executable by processors 120 may include a protocol stack
142, network device drivers 144, instructions to i1nvoke
functions 1n accelerators, co-processors, and TCAMs; and
an Application Programming Interface (API) such as a
dependency synchronization and threading facility that may
be stored in storage 150. Network device drniver 144 1s
soltware that interfaces between protocol stack 142 and
network interface 140 and enables computing device 110 to
communicate with remote computing devices via conven-
tional network protocols. Network device driver 144 trans-
fers one or more packets from the network intertace 140 and
stores the one or more packets 1n a location 1n storage 150
at which processors 120, accelerators 147, and co-processors
149 may have access to the packets.

PAND 1s a lightweight micro threading and synchroniza-
tion mechanism and API based on the concept of dependen-
cies. PANDA may include mnstructions stored on storage 150
of computing device 110 or in some other embodiments
another connected storage medium whereby PANDA may
be executed by processors 120 of computing device 110.
PANDA may comprise a number of operations that provide
various functions related to implementing parallelization,
synchronization, and dependencies for serial processing
pipelines. Storage 150 may include program memory




US 12,026,546 B2

11

capable of storing programs and software, such as an oper-
ating system 148, other APIs, and other computerized pro-
grams or applications.

The principal components of system 100 may be subdi-
vided 1into: header processing, protocol processing, accel-
crations, and parallel data object processing. Parallel data
object processing 1s designed as a threading and synchroni-
zation model whereby the model utilizes various types of
parallelization to process data objects concurrently. For
example 1n networking, this would be using horizontal
parallelization, vertical parallelization, and hybrid paral-
lelization to process packets (data objects 1n networking)
through different protocol layers.

Header processing includes parsing of packet headers at
various protocol layers, creating headers for outgoing pack-
ets, extracting relevant information from headers, including
identifying information of the protocol and the length of the
header, updating information as needed, and performing
tasks implied by the contents of the headers. Protocol
processing may include generating messages as specified by
the protocol and maintaining/updating the protocol state at
cach agent (e.g. mitiator/target) involved. Accelerations
include ancillary functions that are implemented 1n hardware
to speed up common processing functions and transiorms
such as encryption, data copy, checksum calculation, and
hash value computation.

There are two fundamental types of parallelism that may
be applied for parallelizing a serial processing pipeline:
horizontal parallelism and vertical parallelism. These are
illustrated 1n FIG. 2. In horizontal parallelism, multiple
pipelines execute concurrently for processing different data
objects, but the stages 1n each pipeline are processed serially.
In vertical parallelism, stages of the same pipeline process-
ing a single data object execute concurrently. Horizontal
parallelism and vertical parallelism may be combined into a
hybrid approach, termed hybrid parallelism, where multiple
pipelines provide horizontal parallelism, and within each
horizontal pipeline, vertical parallelism may be used to
execute different stages in parallel.

In horizontal parallelism, different data objects are pro-
cessed 1n parallel in different threads of execution. Each
thread serially processes one data object at a time through
the pipeline. The minimal number of parallel threads
required to handle data object processing at maximum input
rate 1s given by the equation:

#threads=Ceiling(? ;o2 i)

where t,, . 1s the minimum time between consecutive
data objects being input, and t_, .., 1s the maximum
time 1t takes to process a data object in the pipeline.
Note that it t_, . 1s less than t,  then one thread is
suflicient to handle the workload which may be a
desirable design characteristic 1n some cases.

In networking processing pipelines, and other pipelines as
well, the number and types of stages for processing diflerent
data objects can vary widely. Different processing threads
may execute the same processing for a layer concurrently,
and the time to process a stage may be variable for different
data objects. A synchronization method i1s needed between
threads that are concurrently executing the same stage and
may modily common state.

In horizontal parallelism, t

objece 18 glven by the equation:

Iabjecr:z:aff layers I(I)srage

where t(1),,,.. 18 the maximum time to process the 1’th
stage of a pipeline. The total time to process a data
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object 1n a horizontal pipeline thus equals the sum of
times to process each of the constituent stages.

Data objects are expected to be processed in order through
a serial processing pipeline. In the case of horizontal paral-
lelism, data objects may be processed in a round robin
fashion as they are input—the first object 1s processed by the
first thread, the second object by the second thread, etc. If
there are enough threads to satisty:

tthreads=Ceiling(t,, ../t,,...), then on input of the Nth+1

data object, where N 1s the number of threads, process-
ing of the first object should be complete so that the first
thread can commence processing the Nth+1 data
object.

Multi-queue 1s a specialized form of horizontal parallel-
1sm that 1s commonly supported 1n host networking imple-
mentations. The concept of multi-queue 1s 1llustrated 1n FIG.
3. Receive Side Scaling (RSS) 1s a multi-queue technique
implemented by NICs (Network Interface Cards) to perform
parallel packet processing, and Receive Packet Steering
(RPS) emulates RSS 1n software. These techniques employ
multiple receive queues to facilitate parallelism.

When packets are received on a network interface they are
steered to mput queues. Multi-queue relaxes the requirement
that packets are processed 1n order such that packets for the
same tlow must be processed in order. To achieve in-order
processing for flows, packets for the same flow are steered
to the same queue based on a classification algorithm that
identifies the flow associated with a packet. An input queue
1s a FIFO queue containing received packets. Packets are
dequeued and processed by a thread that handles an 1mput
queue. Usually, each queue 1s processed by only one thread
to avoid the need to synchronize queue accesses amongst
threads. The thread that handles a queue can be interrupt
driven or do busy polling. In the mnterrupt driven model,
when a packet arrives at an empty queue an interrupt 1s
raised to wake up the handling thread for the queue. In the
busy polling model, the processing thread continuously
checks for queued packets in a tight loop. The interrupt
model generally provides lower CPU utilization, but has
higher latency than the busy polling model.

In a real system, the number of queues needed 1s deter-
mined by a number of factors. A typical RSS configuration
would be to have one receirve queue for each CPU 1f the
device supports enough queues, or otherwise at least one for
cach memory domain, where a memory domain 1s a set of
CPUs that share a particular memory level (L1 cache, L2
cache, NUMA node, etc.). In some specialized use cases,
queues might be dedicated for packets of different priorities
or for packets of specific applications.

While the concept of multi-queue was originally applied
to packet processing 1n the networking receive path, it has
since been applied 1n other use cases, such as parallelizing
disk I/O, so 1t can be considered a general mechanism.

In vertical parallelism, different stages of the same serial
pipeline processing a single data object are processed in
parallel. The salient properties of a serial processing pipeline
are that each stage 1s run to completion before starting the
next stage, and every stage 1s implicitly dependent on all
previous stages. So, 1n order to parallelize a serial processing
pipeline, a synchronization mechanism 1s needed to handle
dependencies between stages. Dependencies are unidirec-
tional, a later stage can have a dependency on an earlier
stage, but not the other way around. A model for dependency
synchronization 1s described below.

For vertical parallelism, t 1s given by the equation:

object

Iﬂbjecf:MaXcIH layers I(I)srage
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Where t(1),,,.. 15 the maximum time to process the 1°th
stage of a pipeline. The total time to process a data
object 1n a vertical pipeline thus equals the maximum
time to process any of the constituent stages. Note that
per the equation of:

#threads=Ceiling(t,,,../t, 11 t i1s less than t;,
then a single vertical pipeline would be suflicient for
processing the maximum input rate workload. Vertical
parallelism scales well as the depth of serialized pipe-
lines increases. If all the stages execute with some
bounded latency, then adding stages to the pipeline
should not appreciably increase latency.

Block level parallelism 1s a specialized form of vertical
parallelism that allows fine grained parallelization of inde-
pendent blocks of code within a code path. FIG. 4 illustrates
this concept. Block level parallelism may be implemented
using a fork and join model. A fork operation 1s done to
create a new ephemeral thread. One of the parallel code
blocks runs in the original thread, and the other runs in the
ephemeral thread. The ephemeral thread executes its code
block and then exits. The original thread executes its code
block and then performs a join operation to wait for the
ephemeral thread to exit. The model can be extended to
allow creation of multiple ephemeral threads.

Block level parallelism 1s at the level of code blocks and
should be amenable as a compiler optimization that would
identify parallelizable code paths to output an executable
that does parallel execution. For purposes of discussion, we
may assume that an explicit interface can be defined that

informs the compiler about code blocks that can be paral-
lelized.

An example of a macro that informs the compiler that
some blocks of code are independent and can execute 1n
parallel, may be:

PARALLELIZABLE(blockl, block2, . . . )

As an example of block level parallelism, consider the
code as follows whereby checksum verification and connec-
tion lookup are performed while processing a TCP packet.

if (checksum_ verify(packet, 1phdr, tcphdr))

goto drop_packet

if (}{cnx=tcp_cnx_lookup (1phdr, tcphdr)))

goto drop_packet

checksum_verily and tcp_cnx_lookup are independent
operations so they can be run in parallel. The following 1s
example of a non-limiting code of how the operations might
be parallelized:

inp .ur) ohject

PARALLELIZABLE(
{ cres = checksum_verify(packet, tephdr) },
{ enx = tep_cenx_lookup(iphdr, tephdr) }

)

if (cres I| lenx)
goto drop_packet

The equations 1., 2.1 14ers Mg and t
MAX 77 1qyers (1) ssage may be used to determme the e
execution time when using block level parallelism.

To achieve highest throughput, a combination of vertical
parallelism and horizontal parallelism, termed hybrid paral-
lelism, may be employed.

FIG. 5 demonstrates an example processing flow for
processing twenty data objects using hybrid parallelism. In
this example, there are four horizontal serial processing
pipelines. Within each horizontal pipeline, vertical parallel-
ism 1s applied to data object processing with at most five
layers being processed concurrently.

ﬂbjecz‘
Tect on

10

15

20

25

30

35

40

45

50

55

60

65

14

Per the equation #threadsZCeiling(thject/tmw) hybrid
parallelism 1s eftective whent,, . ~t, . For high through-
put applications, such as a high-speed network switch, 1t 1s
likely t, 007>, €v€Nn When vertical parallelism 1s 1n use.

In hybnid parallelism, vertical and horizontal parallelism
work 1n concert to achieve high throughput. Vertical paral-
lelism bounds the latency to process a single data object
regardless of the pipeline depth, so that latency 1n data object
processing has relatively low variance. This minimizes
topjecrr @nd, per the equation #threads= Celhng(tﬂbject/tmpm)
the number of required horizontal pipelines 1s thus mini-
mized. The benefit of this 1s that hybrid parallelism allows
scaling to high throughput, minimizes per data object
latency, and 1s more eflicient use of resources (1.e. better “bin
packing”) than either vertical or horizontal parallelism
alone.

In some cases, the number of threads available to a
vertical pipeline may be limited to be less than the depth of
the pipeline for data objects being processed. This scenario
may be known as constrained vertical parallelism. Con-
versely, if the number of available threads 1s greater than or
equal to any possible pipeline depth then that i1s called
unconstrained vertical parallelism.

In constrained vertical parallelism, when a thread 1s not
available, the dispatcher will block until one 1s available. A
thread becomes available when a runming thread fimishes. In
this architecture, processing pipelines are work conserving,
so that at least one thread for some stage 1s running and
guaranteed to finish without blocking.

For constrained vertical parallelism, t
equation:

1s given by the

object

=Ceiling(#stages/#threads)*Max

o biect

#threads indicates the number of threads available to the
vertical pipeline, and #stages indicates the number of
stages 1 the wvertical pipeline. Note that if
#threads>#stages then the equation 1s equivalent to
tobjecr MaX 17 1averstDssage- 1T #threads 1s one, then the
equation degenerates 10 t ;... =2 .1 ravers t{1)szage With NO
vertical parallelism.

FIG. 6 illustrates the processing flow of constrained
vertical parallelism. The diagram shows processing of eight
packets 1n constrained and unconstrained parallelism. In this
example of unconstrained vertical parallelism, vertical par-
allelism 1s limited to two threads per vertical pipeline. To
handle the input rate, hybrid parallelism 1s used with two
horizontal pipelines.

The fundamental elements for parallelism in a serial
processing pipeline are data objects, external data, threads,
and dependencies. A data object 1s one instance of data that
a pipeline processes. In the case of networking, a data object
1s a packet or a Protocol Data Unit (PDU). Data objects have
fundamental characteristics including the set of bytes that
comprise the data of the object (e.g. packet data) and the
length of the object 1n bytes (e.g. packet length). The length
1s counted from the first byte of the object through the last
byte. As described below, processing of an object may
commence before all the bytes are available, 1n which case
the object length 1s dynamic and at any given time refers to
the monotonically increasing number ol object bytes cur-
rently available to be processed. Data objects may include an
indication that the full object has been received (e.g. an
Ethernet frame has been received). When indicated, the
whole object has been received and the reported object
length 1s the final length of the object.

Metadata constitutes any data about a data object that 1s
collected and recorded by one pipeline stage and can be

all fayers I(Il)srage
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consumed by another stage in processing. For instance, 1n
networking processing, one stage may extract fields from the
protocol layer 1t 1s processing so that later stages can
consume the information. For example, IP layer processing
may record the IP addresses 1n metadata so that the down-
stream TCP processing can use the addresses in connection
lookup. Dependencies are used to synchronize between
metadata producers and consumers.

External data constitutes any configuration or state infor-
mation that 1s used by some stage 1n a pipeline and 1s global
across all the pipeline stages and instances. External data
may be read or written by the pipeline stages. Access to the
data 1s synchromzed by a dependency. For istance, the
dependency “access control data” may be defined. A layer
that writes control data would block the dependency and
resolve 1t once the data 1s written. A layer that reads the data
would wait on the “access control data” dependency.

A thread 1s one umt of execution in processing. In this
architecture diflerent threads are used to process each stage
of a vertical pipeline. For example 1n networking, one thread
may be employed to process the IP layer header of a packet,
and another may process the TCP layer header in the packet.
Threads are supported by the underlying operating system to
allow concurrent execution (for mstance i Linux, pthreads
provides this functionality). The threads for vertical paral-
lelism can be described as micro-threads or fibers that
execute and run to completion, without preemption, 1n the
context of processing a single data object.

Some number of OS level threads are created to perform
serial processing. Each thread runs an event loop that polls
a work queue for new work to be performed. A queue
contains work 1tems, each of which describe a unit of work
being requested. A work queue may be per thread or shared
amongst several threads, and a single entry work queue per
thread may be used to allow precise scheduling of one work
item to a thread. A work item includes all the necessary
information for processing some work including the data
object to process, the specific function that the thread should
perform, as well as other contextual information needed for
processing 1n the specific use cases.

When work becomes available to a thread, that is there 1s
an 1tem 1n the work queue, it dequeues the first item 1n the
queue and performs the requested processing by calling an
appropriate function. Note that the event loop may block on
a conditional variable while waiting for new work 1n the
queue and would be woken up by another thread that added
work to the queue (a scheduler thread for example). When
the processing function returns, the thread 1s considered to
be 1n done state and the event loop reinitializes to process the
next item in the work queue.

A thread will block while 1t 1s waiting on a dependency to
be resolved or waiting for a long acceleration function to
return. While a thread 1s waiting, another thread can be
scheduled to run on 1ts CPU. All dependencies are handled
within the context of the vertical and horizontal pipelines,
there are no external dependencies. The unidirectional prop-
erties of dependencies prevent deadlock. Threads may be
terminated due to an exception. For instance, 11 when
processing a layer an error condition 1s discovered that
renders the work of subsequent stages irrelevant, a thread
may terminate all downstream threads of a vertical pipeline.
When a thread 1s terminated, any unresolved dependencies
that the thread blocks are implicitly resolved and the thread
1s reset to 1ts 1nitial state.

Threads may be grouped together into the thread sets. A
thread set defines an instance of a vertical pipeline for
processing a data object 1n a horizontal pipeline and 1s
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composed of some number of worker threads that may be
created and allocated to the thread set at initialization. At any
given time, a worker thread 1s either “available™, that 1s not
currently running, or “busy”, meaning it 1s running and
processing data. Each thread set may run a top thread that
implements an event loop which calls an mput function for
the thread set. The mput function ran in the top thread 1s
called the top function. The top function runs when the
thread set 1s started to process a data object and it schedules
the worker threads to perform the processing of a data
object. Additionally, other non-worker threads may be
dynamically created and scheduled to participate in process-
ing of a data object.

The set of threads actively running and processing data 1s
maintained by a thread set 1n an ordered list of threads for
the thread set. The ordered list determines the downstream
and upstream relationships between threads which are
needed for dependency resolution. When a thread completes
(becomes “done”) 1t 1s removed from the ordered list. When
worker threads are started they are automatically added to
the ordered list. Both the top thread and other non-worker
threads created 1n the context of a thread set may attach to
the ordered list of threads processing a data object. Once
attached, these threads take on the characteristics of worker
threads 1n that they can participate 1n processing stages of
the pipeline and 1n dependency resolution, including being
able to wait on and resolve dependencies. An attached thread
can be functionally detached which removes the thread from
the ordered list (however 1t does not reset or kill the OS
thread); the thread may later be reattached to the thread set.
Worker threads of a thread set can be scheduled to run 1n two
ways: top function scheduling or cascade scheduling.

FIGS. 7 and 8 illustrates top function scheduling and
cascade thread scheduling and parallelism 1n a serial pro-
cessing pipeline. In both examples, four worker threads,
labeled Thread 1 to Thread 4 in the figures, are needed to
process a data object. Processing commences when a data
object 1s input and work for the object 1s placed on the thread
set’s work queue. The event loop for the thread set dequeues
the work 1tem and invokes the top function.

In top function scheduling (FIG. 7), the top function
schedules all the worker threads needed to process a data
object. The top function performs the necessary processing
to determine the constituent layers in the object to be
processed (in networking this might be the protocol headers
ol a packet). For each layer, a worker thread 1s started by
queueing a work item in the work queue of an available
worker thread (indicated by the dashed arrows from the top
thread to the worker threads). After all of the worker threads
are started, the top function may attach to the ordered list as
shown 1n the example. Once attached, the top function can
call “wait threads™ to wait for all preceding threads to
compete (1n the example of FIG. 7 the preceding threads are
Thread 1 to Thread 4).

In cascade scheduling (FIG. 8), the top function performs
minimal processing of the data object and starts the first
worker thread to process the object by placing a work 1tem
in an available thread’s work queue (this 1s indicated by the
dashed line from the top thread to the first worker thread).
After starting the first worker, the top thread calls “waait all
threads™. The first thread, Thread 1, wakes up and dequeues
the work 1n its work queue. Thread 1 processes the data
object to determine the next layer that 1s to be processed, and
starts the next worker, Thread 2 1n the diagram, to process
the next layer in the pipeline. Similarly, Thread 2 starts

Thread 3, and Thread 3 starts Thread 4. The cascade stops
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at Thread 4 which does not schedule a next worker. After
starting the next layer, each worker thread processes 1ts own
layer in the data object.

When processing completes for a worker thread, the
thread 1s “done” and 1s remnitialized to process the next work
item. Once all the worker threads are done, ““wait all threads”
returns 1n the top function for cascade scheduling, or “wait
threads™ returns 1n top function scheduling. In either case,
the top function can perform any necessary tail processing,
tor the data object and when such processing 1s complete the
top thread 1s “done” and 1s reinitialized to process the next
work item 1n the thread set queue.

Top function scheduling and cascade scheduling may be
used 1in tandem where the top function mitially starts some
number of threads for processing a data object, and the last
thread started may create more threads in the pipeline via
cascade scheduling.

There are two limits that may be hit when attempting to
schedule a worker thread: 1) the maximum number of
worker threads in the thread set 2) the maximum number of
threads that may be in the thread set’s ordered list. The
second of these limits 1s also applicable to attaching a thread
to a thread set. When either of these limits are hit, a work
item describing the work to be done may be added to a work
queue 1n the thread set. The contents of the queued work
item depend on whether a worker thread 1s being scheduled
or a non-worker thread, including the top thread, 1s being
attached. In the case of a worker thread being scheduled, a
queued work 1tem contains a reference to a function to run
as well as a pointer to the data in the data object that the
tunction will process. When a worker thread 1s available and
there 1s availability 1n the ordered list and there 1s a queued
work 1tem for scheduling a worker thread at the head of the
queue, the work 1tem 1s dequeued and a worker thread is
started to execute the function listed in the work item
tollowing the procedures described above.

In the case that the limit on the ordered list 1s hit when
attaching a thread, a work 1tem containing a reference to the
thread being attached 1s added to the work queue. Subse-
quently, when there 1s availability in the ordered list and a
queued work 1tem for attaching a thread 1s at the head of the
work queue, the work item 1s dequeued and the thread
described 1n the work 1tem can be formally attached to the
thread set’s ordered list. When a work item for attaching a
thread 1s queued, the thread being attached may block until
the work 1tem 1s dequeued and the attach completes; or the
attach function may return with a code that indicates that
completion of the attach operation 1s pending and an asyn-
chronous mechanism may be used to determine when the
attachment has completed.

Threads can be killed so that they stop processing,
become “done”, and are remitialized to process the next
work 1tem. Note that this 1s a “soit kill” in that the under-
lying OS thread continues to run. There are two operations
to kill threads: “kill threads” and “kill all threads™. “Kill
threads” 1s called by a worker thread or an attached thread
ol a thread set to kill all the threads that are downstream of
the currently running thread 1n the order list of a thread set;
this includes killing threads that are actively running and are
in the ordered list, as well as flushing the work queue for the
thread set. “Kill all threads™ 1s called externally, from a
non-worker or unattached thread, and kills all the threads in
a thread set and flushes the work queue.

When all the necessary threads to process a thread set
have been started, a thread set can be closed by invoking a
“thread set close” function. When a thread set 1s 1n closed
state, no additional worker threads can be started and no
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non-worker threads can be attached to the thread set. Closing
a thread set 1itiates propagation of resolved dependencies
between threads sets as described below.

A datapath defines an instance of a full serial data pro-
cessing pipeline and 1s composed of some number of thread
sets where each thread set can process one data object at a
time. Thread sets of the datapath can execute concurrently,
subject to inter thread set dependencies being correctly
handled, to achieve horizontal parallelism. The thread sets
are well ordered based on the order of mput objects 1nto the
serial data pipeline.

A number of thread sets may be created and assigned to
a datapath at initialization. A thread set 1s either “available”,
that 1s not currently processing a data object, or “busy”
meaning 1t 1s processing a data object. The busy threads sets
that are kept 1n an ordered list for the datapath that provides
the relative ordering amongst busy thread sets 1n the data-
path (the ordered list 1s used for inter thread set dependency
resolution as discussed below). Each datapath has a serial-
1zed input scheduler function that serves as the scheduler of
the thread sets of the datapath. When an object 1s mnput nto
the datapath, the scheduler tries to select a thread set among
the set of available thread sets. If a thread set 1s available 1t
1s reserved as busy and 1t 1s mserted at the tail of the ordered
list of busy thread sets for the datapath, and the top function
for the thread set 1s run. If no available thread sets are
available, that 1s all the allocated thread sets in the datapath
are busy processing data objects, the scheduler may queue a
work 1tem for the data object in a datapath work queue.
Subsequently, when a thread set completes its processing for
an object and 1s “done”, the thread set becomes available;
the scheduler can dequeue a work 1tem from the datapath’s
work queue and proceed to start a thread set to process the
object described in the work item. A datapath work queue
may have a limit on the number of objects that can be
queued. If the scheduler encounters a datapath work queue
that has reached the limit then it may wait until there 1s
availability 1n the queue or return an error code to the caller.

Dependencies are a synchronization mechamsm used
when one pipeline stage 1s dependent on processing in
another, and correspondingly a dependency 1s one instance
of the mechanism. A stage that has a dependency on another
stage cannot proceed to execute in the critical region cor-
responding to the dependency until the stage 1t depends on
has executed the necessary code to satisty and resolve the
dependency. In this architecture, dependencies are strictly
umdirectional so that a later stage can have a dependency on
an earlier stage, but not the other way around. To parallelize
a serial processing pipeline, an explicit synchronization
mechanism for dependencies between stages 1s needed.
Dependency synchronization can be expressed as resolve
points and wait points. A resolve point 1s a point 1n the code
path of a stage at which processing has been done to satisty
a dependency of a later stage. A wait point 1s a point in the
code path of a stage at which execution cannot proceed until
a dependency 1n an earlier stage has been resolved. Wait and
resolve primitives are implemented in the API to synchro-
nize between wait and resolve points.

As an example, consider a dependency between the
pipeline stage for TCP processing and the stage for IP. TCP
layer processing can perform basic validation on a TCP
header and can even perform connection lookup 1n parallel
with IP layer processing. However, the TCP layer cannot
commit to accepting the packet and cannot change the state
ol a corresponding Protocol Control Block (PCB) state until
the IP layer has completed i1ts validation and has itself
accepted the packet. A wait point 1s defined 1n the TCP code
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path belore accepting the packet and committing changes; a
resolve point 1s defined in the IP layer code after all
validation checks and the packet 1s accepted. Note that the
IP layer processing has no dependency on TCP and can run
to completion without being blocked by TCP or any later
stage.

Dependencies may be defined and enumerated. For
instance, i the above example, a dependency for “IP layer
accepted packet” can be defined. The set of enumerated
dependencies amongst all possible protocol layers consti-
tutes the set of dependencies 1n a pipeline. It 1s expected that
the maximum number of dependencies for a pipeline 1s a
relatively small number (e.g. thirty-two) to facilitate eflicient
implementation. The set of dependencies that a code path
resolves may be declared at thread initialization. Multiple
threads may resolve the same dependency, and each such
istance etlectively creates a new dependency. This property
1s exploited with network encapsulation. For example, 1n
IP-1n-IP encapsulation, the IP protocol layer appears twice 1n
the pipeline so an “IP layer accepted packet” dependency
would be resolved by threads in two different vertical
pipeline stages. A wait point in transport layer code for an
encapsulated IP packet has a dependency on the mnner IP
header for “IP layer accepted packet™.

When a thread resolves a dependency, downstream
threads are informed of the resolution and execution can
proceed through wait points for the dependency. To do this,
a resolution signal 1s propagated to downstream threads. The
signal 1s propagated within the thread set until one of these
conditions are met: 1) the end of the thread list for the
pipeline 1s reached, 2) a thread 1s encountered that blocks the
same dependency, 3) a thread i1s encountered for which the
same dependency has already been resolved. FIG. 9 pro-
vides an example of parallelized processing for an object in
a Tour-stage pipeline and how dependencies are resolved to
advance processing.

The columns in the diagram of FIG. 9 refer to the threads
tor the four pipeline stages labeled Thread 1 to Thread 4. The
rows of the diagram, labeled A to E, provide points in the
timeline of the pipeline for discussion. There are two depen-
dencies represented by black and shaded circles. Solid
circles indicate resolve points for dependencies. Hollow
circles indicate wait points for dependencies that are not yet
resolved, and crossed circles indicate wait points for depen-
dencies that have been resolved by an earlier stage.

Line A in the diagram shows the state ol dependencies
before execution commences. Line B shows the initial
execution allowed in the four stages. The upward slanting
areas represent portions of stages that have no dependencies
and can run 1n parallel from the start. In Line C, Thread 1
resolves the black dependency, at this point the downward
slanting right patterned section 1n Thread 2 can now run. In
Line D, Thread 2 resolves the second instance of the black
dependency—at this point the downward slanting right
patterned section in Thread 4 can run. Although the black
dependency 1s now resolved for Thread 3, 1t cannot proceed
any further since 1t 1s still waiting on the shaded dependency.
Finally, Line E shows that Thread 2 resolves the shaded
dependency so that the cross patterned portions of Thread 3
and Thread 4 can now run.

The threads 1n a processing pipeline are reinitialized once
their work on a data object 1s complete. The only time that
a thread will block 1s when 1t 1s waiting on a dependency. All
dependencies are handled within the context of the pipeline,
there are no external dependencies. The unidirectional prop-
erties of dependencies ensure there is no possibility of

deadlock.
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If synchronization 1s required with an external event or
data, a special pseudo data object can be inserted into the
pipeline. For instance, 11 the pipeline processing accesses
external configuration data that 1s written by an external
agent, then the data access can be synchronized by an
“external data” dependency. An object could then be created
so that its processing blocks the “external data” dependency,
writes the external data, and then resolves the “external
data” dependency once writing the data 1s complete.

When hybnd parallelism 1s 1n use, each horizontal pipe-
line contains 1ts own dispatcher that initiates scheduling
threads for vertical parallelism when a new object 1s input to
the pipeline. Dependencies may be propagated from one
horizontal pipeline to the next. Resolution signal propaga-
tion happens between the pipelines only after the last thread
in the earlier pipeline 1s created. The propagation happens
similarly as described above. When a dependency 1s
resolved for the last thread of one horizontal pipeline, the
resolution signal propagates to the first thread of the next
horizontal pipeline (which may be the first thread processing
the next m-order data object).

Note that there are eflectively two classes of dependencies
with respect to hybrid parallelism. One class contains depen-
dencies that are only of interest 1n the context of a single
vertical pipeline processing an 1ndividual object. For
instance, the “IP layer accepted” dependency 1s only of
interest to later stages processing a network packet. The
other class refers to dependencies that are of interest
between horizontal pipelines. For instance, the “external
data” dependency could be used to synchronize reading and
writing external data between processing 1n two horizontal
pipelines. The dependency model does not need to distin-
guish between these classes. A resolution signal for a depen-
dency that 1s only of interest within a vertical pipeline of one
horizontal pipeline may logically propagate to another hori-
zontal pipeline, however 1n the receiving pipeline a blocker
of the dependency that i1s not a watcher (see below) would
be placed before any watchers so that the resolution signal
1s disregarded.

Dependencies define dependencies between stages of the
processing pipeline. These may be represented by an ordinal
number of 0, 1, 2 and so on up to a maximum number of
dependencies (e.g. thirty-two). However, this 1s non limiting
and may be represented by any type of number or indicator
reference. Dependencies may be grouped together in one or
more dependency sets. Having a small number of maximum
dependencies aflords the possibility of using a bit mask to
represent a dependency set.

Threads are units of execution where a thread 1s created
for each stage 1 a pipeline. Each thread implements a
continuous event loop. Threads are created in an 1nitial
“object wait” state and are started by invoking a thread
function that describes the data object processing to execute.
Once a thread 1s started 1t 1s “running”, and when the thread
completes 1ts processing 1t 1s “done” and re-initializes to
“object wait” state. The thread function structure indicates
the dependency waiters and blockers contained 1n its pro-
cessing. A thread may run a different thread function each
time 1t 1s started. A thread set 1s created for a pipeline and
contains all the threads 1n a pipeline and the set of thread
functions that may be mnvoked. A thread set also contains the
run state for a pipeline, for instance to track dependencies
that threads are waiting on. Threads are ordered by when
they were created, and this ordering 1s used 1n the depen-
dency synchronization model to describe earlier and later
stages. The maximum number of threads 1 a thread set
might be bounded so that sets of threads could be repre-
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sented by bitmaps. A thread may be a dependency watcher,
blocker, or waiter. A dependency watcher 1s a thread inter-
ested 1n monitoring a dependency and may wait on 1t. When
a thread 1s created, the set of dependencies that the thread

watches may be declared. The thread set maintains a list of >

watchers for each dependency. A dependency waiter 1s a
dependency watcher actively waiting on a dependency.

A dependency blocker 1s a thread that blocks a depen-
dency. The thread must resolve the dependency before the
dependency resolution signal 1s propagated to later threads.
A dependency blocker may also be a dependency watcher.
When a thread 1s created, the set of dependencies that the
thread blocks 1s declared and the thread set maintains a list
of blockers for each dependency. Once a dependency
blocker has resolved a dependency, 1t may be removed from
the list of blockers for the dependency.

FIG. 10 1llustrates the operation of dependency process-
ing. The diagram shows the list of blocker and watcher
threads for a dependency. Blockers are indicated with a solid
black circle, watchers of an unresolved dependency are
indicated by an upward angled striped circle, and watchers
of a resolved dependency are indicated by a downward
angled striped circle. Once a blocker has resolved a depen-
dency, 1t 1s removed from the list of blockers for the
dependency.

The rows marked A, B, C, and D show the list 1n four

states. In the 1nitial state, line A, there are three blockers and

three watchers. Thread 10 and Thread 17 are blockers but
not watchers, Thread 13 and Thread 19 are watchers but not
blockers, Thread 12 1s both a watcher and a blocker. In line
B, Thread 17 resolves the dependency. The resolution signal
1s propagated to Thread 19 and then stops because the end
of the list 1s reached. Note that Thread 17 1s not a watcher
of the dependency so that it 1s eflectively creating a new
independent 1nstance of the dependency from that 1n earlier
threads. In line C, Thread 10 resolves the dependency. The
resolution signal 1s propagated to Thread 12, but goes no
turther as Thread 12 1s a blocker of the dependency. The
dependency 1s now resolved for Thread 12. Subsequently 1n
line D, Thread 12 resolves the dependency. The resolution
signal 1s propagated to Thread 13 but stops at Thread 19
because the dependency 1s already resolved for Thread 19.

Dependency resolution may be propagated from one
thread set to another 1n the ordered list of thread sets 1n the
datapath. Dependencies that may be propagated between
thread sets are called propagated dependencies and are
C
C

leclared 1n the configuration of a datapath. The propagated
lependencies must be a subset of all the dependencies
defined for a datapath, and each dependency i1s either propa-
gated or non-propagated. With regards to dependency reso-
lution amongst threads in a thread set, propagated depen-
dencies are indistinguishable {from non-propagated
dependencies. Propagated dependencies that have been
resolved and are not blocked by the last thread of a closed
thread set may be resolved in the next thread set in the
datapath’s ordered list.

The terminating thread of a thread set 1s the last thread 1n
the ordered list when there are no 1tems on the thread set’s
work queue and the thread set 1s closed. Resolving a
dependency 1n the next thread set 1s done by propagating a
dependency resolution signal starting from the first thread 1n
the following thread set 1n the datapath ordered list of thread
sets. There are three events that can imtiate dependency
resolution propagation between threads sets: When a thread
set 15 closed by calling the “thread set close” function; When
a dependency 1s resolved for the terminating thread in a
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closed thread set; When a thread set 1s added the datapath
and the preceding thread set in the datapath ordered list 1s
closed.

If a dependency resolution 1s propagated between thread
sets and the resolution signal reaches the terminating thread
in the following thread set which 1s also closed, then the
dependency resolution may be further propagated to the next
next thread set. Hence, a single dependency resolution may
resolve a dependency in multiple thread sets.

Early propagated dependencies are propagated dependen-
cies for which dependency resolution can be propagated to
the next thread set before the origin thread set 1s closed.
Early propagated dependencies must be a subset of the
propagated dependencies for a datapath. A propagated
dependency 1s either “early propagated” or “not early propa-
gated”. If a thread set 1s closed and the terminating thread 1s
running then early propagated dependencies have the same
semantics as not early propagated dependencies. An early
propagated dependency can only be blocked by at most one
thread 1n a thread set (the system may enforce this rule). The
resolution signal of an early propagated dependency can be
propagated from a thread set that i1s not yet closed 1f the
following conditions are met: The dependency has been
resolved for the last running thread in the ordered list (the
work queue may be non-empty in this case); Either, exactly
one thread in the thread set has blocked and then resolved
the dependency, or the dependency 1s a non-blocked early
propagated dependency for the thread set (see below).

A thread set may declare a set of non-blocked early
propagated dependencies, these are early propagated depen-
dencies for which 1t 1s known a priori that they will not be
blocked by any threads in the thread set. Non-blocked early
propagated dependencies “pass through™ a thread set, that 1s
once a dependency 1s resolved for the first thread in the
thread set 1ts resolution can be propagated to the next thread
set 1n the datapath. The non-blocked early propagated
dependencies must be a subset of the early propagated
dependencies for the datapath. The system may enforce the
rule that a non-blocked early propagated dependency must
not be blocked by any thread in the thread set.

If a new thread set 1s added to the ordered list for a
datapath which was previously empty, that 1s this 1s the first
thread set 1n the ordered list, then all the propagated depen-
dencies are automatically resolved. IT a thread set 1s being
added to the list after an existing thread set, then the 1nitial
set of resolved propagated dependencies of the thread set 1s
determined based on the dependency resolutions propagated
from the previous thread set (per above rules).

As described 1n the discussion of RSS, 1n order processing
semantics may be relaxed such that only packets within a
flow are processed 1n order. This concept can be generalized
to serial data processing as data objects that belong to the
same legical flow can be grouped together and in order
processing of objects 1s maintained within that group. A
dependency channel contains an ordered list of threads sets
that are processing objects within a logical data flow. A
datapath maintains a number of dependency channels, where
cach channel contains an ordered list of thread sets that are
processing objects of the same logical flow.

A set of channel dependencies are used to maintain the
order processing semantics and synchronization among the
thread sets of a channel. Channel dependencies are declared
in datapath configuration and are propagated dependencies
and so must be a subset of the propagated dependencies for
a datapath. A prepaga‘[ed dependency 1s either a “channel
dependency” or a “non-channel dependency”. Channel
dependencies can be early propagated dependencies or not,
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and 11 they are early propagated dependencies they can also
be non-blocked early propagated dependencies for a thread.
A datapath may contain multiple sets of dependency chan-
nels where each has 1ts own logically independent instance
of the channel dependencies.

A thread set joins a dependency channel via a “join
channel” operation. An argument specifies which channel to
join, for example as a channel i1denftifier. A thread set 1s
joined to the channel by adding 1t to the ordered list of thread
sets for the channel. Once a thread set has joined a depen-
dency channel 1t 1s joined for the remaining lifetime of the
thread set for processing a data object. A thread set could
101in more than one dependency channel 1if multiple depen-
dency channel sets are supported by the datapath; in this case
the arguments to a join operation would specily both the
dependency channel set to join and the identifier of the
channel within the set. To avoid dependency deadlock, the
relative ordering of thread sets in a dependency channel
must be the same as that 1n the ordered list of a datapath. For
example, 1f thread A 1s 1n the datapath ordered list before
thread B, then thread A must join a dependency channel
betore thread B does.

Initially, when a thread set starts, the thread set 1s not
joined to a channel. Typically, some processing would be
required on a data object to determine the logical tlow that
the object belongs to and hence which channel to join. A
thread set 1s not required to join a channel as might be the
case ol an object that 1s processed independently with
respect to all other objects. As propagated dependencies,
channel dependencies that have been resolved and are not
blocked by the terminating thread 1n a closed thread set (or
are early propagated dependencies), are resolved 1n the next
thread set of the dependency channel by propagating a
resolution signal at the first thread of the next thread set.

In the case of channel dependencies, the next thread set 1s
determined by the ordered list for the dependency channel to
which the thread set joined. In this manner, channel depen-
dencies are propagated amongst the thread sets of a channel.
Note that the set of channel dependencies are the same for
all channels of a datapath, however since they are only
propagated amongst thread sets of the same channel they are
cllectively mndependent sets of dependencies between chan-
nels. If a thread set has jomned a channel then channel
dependencies are propagated between thread sets of the
channel following the same rules as how non-channel
dependencies are propagated between thread sets of a data-
path. IT a thread set has not joined a channel, then propa-
gation ol any candidate channel dependencies 1s deferred
until the thread set joins a channel. If a thread set never joins
a channel, then dependency resolutions for channel depen-
dencies are never propagated from the thread set processing
a data object.

A common implementation of dependency channels will
be to employ a hash table that contains an array where each
entry defines a channel and contains the ordered list of
thread sets joined to a channel. A channel 1dentifier would be
an index into the array. To determine a channel to join, a
thread might hash over fields of a data object that 1dentify a
flow (e.g. in networking a hash over the 3-tuple of protocol,
IP addresses, and transport port numbers might be done).
The hash value can then be converted to an index in the
channel table by performing a modulo of the value with the
s1ize of the table. Note that this technique does not neces-
sarily yield a one to one mapping between logical flows and
channels (in the same way that RSS does not do that).

There are three types of memory related to thread pro-
cessing 1n this architecture: Local memory; Data object
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memory; and Metadata memory. Local memory 1s memory
that 1s primarily associated with one CPU or thread. Local
memory contains data that 1s written by the CPU or may
contain shadow copies of external data that itself 1s stored 1n
a backend external memory. Local memory can be used as
an argument builer to pass data between a CPU and external
clements such as an accelerator in an FPGA; data synchro-
nization and consistency between the running thread and
external accelerator 1s handled by the accelerator interface
and 1ts API. Local memory 1s local to a thread and 1s not
directly shared between threads so no cross-thread depen-
dencies are needed for memory accesses. Local memory
may contain data from external memory where accesses 1o
external memory, including any necessary synchronization,
are mediated by an external memory manager. For instance,
a thread may perform a flow lookup where the tflow state
structure 1s returned 1n local memory. If the structure 1s
modifiable, the thread can write elements 1n the structure in
its local memory and invoke the memory manager, through
an API function, to commit changes to the backend external
memory. The memory manager provides synchronization of
accesses to external memory, for instance reader/writer
locks might be used to synchronize readers and writers of
flow state. The synchronization primitives are transparent to
the processing thread and are hidden in the API functions
called to request data or write 1t back. If synchronization 1s
required with an external event or data, a special pseudo data
object can be inserted into the pipeline. For instance, 1f the
pipeline processing accesses external configuration data that
1s written by an external agent, then the data access can be
synchronized by an “external data” dependency. An object
could then be created so that its processing blocks the
“external data” dependency, writes the external data, and
then resolves the “external data” dependency once writing
the data 1s complete.

Data object memory contains the byte data of an object
being processed. This memory 1s shared amongst the threads
of a thread set processing an object. One pipeline layer may
perform an operation that writes or changes data for down-
stream layers 1n an object or may change the size of the layer
in the data that subsequently changes the data offsets for all
the following layers. In the case that processing of one layer
changes data or data ofisets for following layers, a depen-
dency can be used to indicate that such changes have been
performed. After waiting on the dependency, a thread can
reload the data oflset for the layer that 1t processes (since the
upstream thread may have changed the oflset 1n the object).

Alternatively, a data object might be addressed by a
virtual address that maps to a real memory address in the
data object. If the real data offset changes, for example
because a thread changes the size of the data layer 1t 1s
processing, then the virtual address mapping for down-
stream layers changes but the virtual addresses used to
access their layer data does not change. In this manner a
change 1n size for an upstream layer would be transparent to
downstream threads.

A thread directly operates only on specific portions of a
data object. For instance 1n networking, a thread processing
the IPv4 protocol layer would have read and write access to
IPv4 header 1n a packet, however the thread would not need
access to other protocol headers, such as the TCP header,
that are processed by other threads. A thread may assume
mutual exclusion in reading and writing the portion of data
object that 1t 1s delegated to operate on. Any modifications
to the data object that are outside of the data a thread has
direct access to, such as decrypting payload, are done via
functions that enforce proper dependencies for later stages 1n
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the pipeline. If a thread might modity 1ts portion of the data
object 1t can block an “object modily” dependency. When
the thread runs, 1t can modily the data object 1n 1ts local
memory. Subsequently, the thread resolves the “object
modily” dependency which commits the changes to the data
object (for instance, the updated protocol headers in net-
working might be written to backend memory that contains
the full packet).

Metadata memory contains the metadata for processing an
object and 1s shared amongst threads 1n a thread set as 1t 1s
commonly written by one stage and consumed by later
stages. Dependencies are used to synchronize between read-
ers and writers of metadata. Metadata memory 1s composed
of two sections: common metadata and metadata frames.
Common metadata contains metadata that 1s common to all
the threads 1n a thread set, and may be written or read by any
of the threads. A metadata frame contains the metadata
corresponding to a set of layers for a logical group within
processing. The canonical example of this 1s encapsulation
in networking, where a packet may have several layers of
encapsulation and for each encapsulation an associated set
of metadata might mnclude IP address, protocols, and trans-
port port numbers. Each metadata frame 1s an 1nstance of the
set of metadata for a group of layers (for example, a frame
could contain metadata for one encapsulation layer in net-
working).

Metadata frames can be implemented as an array. A frame
index indicates the metadata frame for which a layer will
read and write metadata and can simply be an index 1nto the
array of metadata frames. Fach thread has its own frame
index value. When the first thread of a thread set starts, its
frame 1ndex 1s 1mtially set to zero; when a non-first thread
1s started 1t inherits the frame index from the previous
thread. An operation “increment frame 1ndex” 1s used to
increment the frame index for a thread. This operation is
invoked when a thread 1dentifies a boundary 1s being crossed
between groups of layers; for instance, 1n network protocol
processing “increment frame index” would be called when
a thread 1s processing an encapsulation protocol such as
GRE. The specific contents of the metadata structure are
defined at compile time per the use case ol metadata and
may be specific to a datapath.

The base metadata structure defines the maximum number
ol metadata frames. When the maximum number of meta-
data frames 1s reached, the “increment frame 1ndex™ opera-
tion has no effect and the frame index for a thread retains its
current value. In this manner, metadata may be overwritten
by downstream threads (dependencies are used as necessary
to ensure consistency). When the maximum number of
metadata frames 1s one, this 1s equivalent to the metadata
frame being common metadata. When the number of meta-
data frames 1s two, the eflect 1s that metadata from the
outermost group and the mnermost group of layers are set 1in
the final output of metadata extraction. This 1s commonly
usetul with respect to networking encapsulation where only
the metadata from the outermost header (the “outer head-
ers”’) and metadata from the mner most encapsulation (the
“inner headers™) are needed.

Protocol And Network Datapath Acceleration (PANDA)
1s a software programming model and API that 1s used to
program serial data processing including primitives for
parallelism and dependencies for serial processing pipelines.
In networking, PANDA will be applied to parallelize the
protocol processing done for packets. PANDA employs a
lightweight micro threading and synchronization mecha-
nism based on the concepts of dependencies that can be used
to construct horizontal and vertical pipelines with concurrent
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processing. PANDA 1s not intended to be a general API, but
1s targeted to the domain specific space of serial pipeline
processing; a corollary 1s that PANDA facilitates hardware
acceleration.

This section specifies an API for the PANDA program-
ming model. The canonical language representation of
PANDA 1s in C and the specific C API for PANDA 1s
referred to as PANDA-C. PANDA-C 1s essentially a library
and extensions may be added to the C language as needed.
Supporting PANDA 1n other languages, Python for instance,
1s feasible. The basic structures of this API are: objects, work
items, dependencies, threads, thread sets, and datapaths.
These map the corresponding elements of the architecture.

An example for a type for a data structure that contains a
set of dependencies, which may commonly be implemented
as a bitmap may be:

panda_dep_set_t

An example for a macro to clear a set of dependencies
indicated by deps whereby deps i1s a structure of type
panda_dep_set_t, may be:

PANDA_DEP_CLEAR(deps)

An example for a macro to set dependencies (or’ed into
deps) whereby deps 1s a structure of type panda_dep_set _t,
and “depl, dep2, . . . ” indicates the dependencies by their
number, may be:

PANDA_DEP_SET(deps, depl, dep2, . . . )

An example for a macro to set one dependency 1n a set of
dependencies (by or’ing the bit corresponding to the depen-
dency with the bitmap 1n deps) whereby deps 1s a structure
of type panda_dep_set_t, and dep indicates the dependency
by its number, may be:

PANDA_DEP_SET_ONE(deps, dep)

An example for a macro to mnitialize a set of dependencies
whereby the effect 1s PANDA_DEP_CLEAR(deps) fol-
lowed by PANDA_SET_DEP_SET(deps, depl, dep2, . . . ),
may be:

PANDA_DEP_INIT(deps, depl, dep2, . . . )

An example for a macro to unset dependencies whereby
deps 1s a structure of type panda_dep_set t, and “depl,
dep2, . .. " indicates the dependencies by their number, may
be:

PANDA_SET_DEP_UNSET(deps, depl, dep2, .. . )

An example for a macro to unset one dependency 1n a set
of dependencies (by and’ing the “not” of the bit correspond-
ing to the dependency with the bitmap in deps) whereby
deps 1s a structure of type panda_dep_set_t, and dep 1ndi-
cates the dependency by 1ts number, may be:

PANDA_SET_DEP_UNSET_ONE(deps, dep)

An example of an internal data structure that describes a
data object containing a pointer to the object’s data, length,
and other characteristics, may be:

struct panda_object

An example of a prototype for thread processing functions
in PANDA where each thread set maintains a set of functions
that can be mvoked to process the various layers of a data
object, the argument passed to the function, indicated by
data, 1s a function work item, the argument may be cast to
a customized super structure (where the work item 1s the first
clement) that includes additional parameters for the specific
use case, may be:

typedel void (*panda_thread_func_t)

(struct_panda_work_1tem™*data)

An example of a prototype for a prototype for a thread set
top function may be the following. The argument passed to
the function, indicated by data, 1s a thread set work 1tem, the
argument may be cast to a customized super structure (where
the work item 1s the first element) that includes additional
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parameters for the specific use case, a top function 1s
specified as a configuration element 1n struct panda_da-
tapath_cont, may be:
typedel void (*panda_thread_set func_t)(struct panda_
thread_set *thread_set, struct panda_work_item *data)
An example of a base structure for work items may be the
following. This 1s included as the root sub-structure in the
structures for various work item structures.
struct panda_work_item
An example of a structure for a work 1tem describing a
function to run 1n a worker thread, may be:
struct panda_work_item_func
An example for setting up a work item for starting work
by a worker thread may be the following. fwork i1s the
function work 1tem structure, func_id indicates the function
to run, no_kill indicates that the worker thread should ignore
the kill request, and do_1iree indicates that the memory of
twork should be freed when the system 1s done with the
work 1tem.
void panda_work item_set func(struct panda_
work_item_1func *fwork, unsigned int func_id, bool
no_kill, boot do_{iree)
An example of a structure for a work 1tem that specifies
a thread to attach to a thread set, may be:
struct panda_work_item_thread
An example for setting up a work item for attaching a
non-worker thread to a thread set may be the following. This
function 1s normally only called internally when attaching a
thread. twork i1s the thread work item structure, thread
indicates the thread, deps indicates that dependencies that
the thread blocks, do_kill indicates that the worker thread
should 1gnore the kill request, and do_1ree indicates that the
memory of twork should be freed when the system 1s done
with the work item.
void panda_work_item_set_thread(struct panda_
work_item_thread  *twork, struct panda_thread
*thread, panda_dep_set_t blocker_deps, bool no_kill,
boot do_1ree)
An example of a structure for a work 1tem that describes
work for a thread set to perform, may be:
struct_panda_work_item_thread_set
An example for setting up a work item for starting work
by a thread set may be the following. tswork 1s the thread set
work 1tem structure, non_blocked_early_deps indicates the
carly propagated dependencies that no threads in the thread

set block, and do_{1ree indicates that the memory of fwork
should be freed when the system 1s done with the work 1tem.
void panda_work_item_set_thread_set(structpanda_
work_item_thread_set *tswork, panda_dep_set_t non_
blocked_early_deps, bool do_1ree)

The following described 1n this section must be called
only 1n the context of a PANDA thread. A PANDA thread 1s
taken to be an implicit argument taken from the current
thread property in the running execution context of a
PANDA thread. In an implementation, the current thread
might be determined from the local OS thread state that
maps to a PANDA thread structure.

An example of a data structure for a PANDA thread may
be the following. In this API the specific contents of the
structure are opaque.

struct panda_thread

An example for returning the PANDA thread for the
running OS thread may be the following. If the OS thread 1s
not associated with a PANDA thread then NULL 1s returned.

struct panda_thread *panda_thread_get_local(void)
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An example for returning the thread set for the PANDA
thread of running OS thread may be the following. If an OS
thread 1s not associated with a PANDA thread then NULL 1s
returned.

struct  panda_thread_set

thread_ set(void)

An example for closing the thread set for the currently
running thread may be the following. When a thread set 1s
closed no new worker threads may be started and no more
threads may be attached.

void panda_thread_close_thread_set(void)

An example for attaching a PANDA thread to the ordered
list of the thread set containing the thread may be the
following. blocker_deps 1s the 1nitial blocker dependencies
for the thread, no_kill indicates the thread ignores a kill
threads request.

int panda_thread_attach(panda_dep_set_t blocker_deps,

bool no_kill)

An example for attaching the running PANDA thread to
the ordered list of the thread set containing the thread and
then closing the thread set for the thread may be the
tollowing. blocker_deps i1s the nitial blocker dependencies
for the thread, no_kill indicates the thread ignores a kill
threads request. Returns zero on success, or a non-zero error
code on failure. The thread set will only be closed when zero
1s returned.

int panda_thread_attach_close(panda_dep_set_t blocker

deps, bool no_kill)

An example for detaching a previously attached thread
from a thread set, may be:

void panda_thread_detach(void)

An example for killing all the threads following the
currently running one in the ordered list of the current thread
set may be the following. Killed threads are remitialized. It
a downstream thread 1s marked as no kill then that one and
none of the threads following that one are killed.

void panda_thread_kill_threads(void)

An example for resolving a single dependency in the
context of the currently runming thread and current thread set
may be the following. dependency indicates the dependency
by its ordinal number.

void panda_thread_resolve(unsigned int dependency)

An example for resolving a set of dependencies in the
context of the currently runming thread and current thread set
may be the following. dependencies indicates the set of
dependencies being resolved. The resolution signal 1s propa-
gated independently for each dependency.

void panda_thread_resolve_set (panda_dep_set_t depen-

dencies)

An example for waiting for a single dependency 1n the
context of the current thread set to be resolved may be the
following. dependency indicates the dependency by its
ordinal number.

void panda_thread_wait (unsigned int dependency)

An example for waiting for all the dependencies 1n a set
of dependencies to be resolved may be the following.
dependencies indicates the set of dependencies to wait on.

void panda_thread_wait_set (panda_dep_set_t dependen-

C1€s)

An example for joimning the thread set for the current
thread to a dependency channel may be the following.
channel 1s the identifier of a dependency channel for the
datapath. While this function 1s called 1n the context of a
thread, 1t’s eflect 1s that the thread set containing the thread
1s joined to the dependency channel for the thread set’s
datapath.

void panda_thread_join_channel(unsigned int channel)

*panda_thread_get_local
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An example for checking the length of the object being
processed may be the following. ““True” 1s returned if the
received length of the object 1s greater than or equal to
length. “False” 1s returned if the full length of the object 1s
known and 1t 1s less than length. It the length of the object
1s less than length and the full length 1s not yet known then
the function blocks until the object length 1s greater than or
equal to length, or the full length 1s known. The data object
1s an 1mplicit argument of type struct panda_object that 1s
inferred from the data object being processed by the thread
set of the runming PANDA thread.

boolean panda_object_check_length(unsigned int length)

An example for a data structure for a PANDA thread set
may be the following. In this API the specific contents of the
structure are opaque. Each PANDA thread belongs to a
thread set.

struct panda_thread_set

An example for allocating and mitializing a thread set
may be the following. num_threads indicates the number of
threads for the thread set. This function cannot be called
from a PANDA thread. The returned value 1s either a pointer
to the newly created thread set or NULL to indicate failure.

struct panda_thread_set *panda_thread_set_create(un-

signed it num_threads)

An example for destroying a thread set may be the
tollowing. thread set indicates the thread set to be destroyed.
This kills any running threads and frees the thread set
structure. This function cannot be called by a PANDA
thread.

vold panda_thread_set_destroy(struct panda_thread_set

*thread_set)

An example for setting a thread function for a thread set
may be the following. thread_set indicates the thread set,
func_1d indicates the function identifier, func indicates the
routine to run, blocker_deps indicates the dependencies that
the function blocks.

int panda_thread_set_set func(struct panda_thread_set

*thread_set, unsigned int func_id, panda_thread_
func_t func, panda_dep_set_t blocker deps)

An example for clearing a thread function for a thread set
may be the following. thread set indicates the thread set,
func 1d indicates the function identifier.

vold panda_thread_set_clear func(struct panda_thread_

set * thread_set, unsigned int func_id)

An example for closing the thread set indicated by thread
set may be the following. When a thread set 1s closed no new
worker threads may be started and no more threads may be
attached.

volid panda_thread_set_close(struct

*thread_set)

An example for starting new work 1n a worker thread of
a thread set may be the following. thread_set indicates the
thread set, ftwork describes the work. The ellect of the
function 1s to commence processing of the next layer in the
pipeline. Returns zero on success, or a non-zero error code
on failure.

int panda_thread_set_start_func(struct panda_thread_set

*thread_set, struct panda_work_item_func *twork)

An example for starting new work 1n a worker thread of
a thread set and then closing the thread set may be the
following. thread_set indicates the thread set, fwork
describes the work. The effect of the function 1s to com-
mence processing of the next layer in the pipeline. Returns
Zero on success, or a non-zero error code on failure. The
thread set will only be closed when zero 1s returned.

panda_thread_set
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int panda_thread_set_start func_close(struct panda_th-
read_set *thread_set, struct_panda_work_item_func

*Twork)

An example for creating a new PANDA thread and
running the provided start routine may be the following. The
thread set to contain the new thread 1s indicated by thread
set, start_routine 1ndicates the function to run, and arg 1s an
argument passed to the start routine. Returns zero on suc-
cess, Or a non-zero error code on failure.

int panda_thread_set_run_thread(struct panda_thread_set

*thread_set, void (*start_routine) (void *), void *arg)

An example for creating a new PANDA thread, running
the provided start routine, and closing the thread set may be
the following. The thread set to contain the new thread 1s
indicated by thread_set, start_routine indicates the function
to run, and arg 1s an argument passed to the start routine.
Returns zero on success, or a non-zero error code on failure.
The thread set will only be closed when zero 1s returned.

int panda_thread_set_run_thread_close (struct panda_th-

read_set *thread_set, void (*start_routine)(void *),
void *arg)

An example for killing all the worker threads and attached
threads 1n a thread set (those that are not marked as no_kall)
may be the following. When a thread 1s killed 1t 1s reinitial-
1zed.

void panda_thread set_kill_all_threads(struct panda_th-

read_set *thread_set)

An example for waiting for all worker threads and
attached threads of a thread set to complete, may be:

void panda_thread_set_wait_all_threads(struct panda_th-

read_set *thread_set)

An example of a data structure for a PANDA datapath
may be the following. A PANDA thread set may belong to
a datapath, or a thread set may be used as a standalone
structure.

struct panda_datapath

An example of a data structure that contains the configu-
ration for a datapath may be the following. The structure
contains the configuration values for a datapath including
the number of thread sets, number of threads per set, the top
function to run in the datapath event loop (function with type
panda_thread_set_func_t), common functions {for the
threads, propagate dependencies, early propagated depen-
dencies, number of dependency channels, and maximum
number of work items in the datapath work queue.

struct panda_datapath_conf

An example for allocating and imitializing a datapath
whereby conf contains the configuration for the datapath,
may be following.

struct panda_datapath  *panda_datapath_create(struct

panda_datapath_cont *cont)

An example for destroying a datapath whereby datapath
indicates the datapath to be destroyed, may be as follows.
This function destroys all thread sets in the datapath (by
calling panda_thread_set_destroy) and {rees associated
memory.

void panda_datapath_destroy(struct panda_datapath *

datapath)

An example for setting a thread function for all the thread
sets ol a datapath may be the following. datapath indicates
the datapath, func_id indicates the function i1dentifier, func
indicates the routine to run, blocker deps indicates the
dependencies that the function blocks.

int  panda_datapath_set_func(struct  panda_datapath

*datapath, unsigned int func_id, panda_thread func_t
func, panda_dep_set_t blocker deps)
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An example for clearing a thread function for all the
thread sets of a datapath whereby datapath indicates the
datapath, func_id indicates the function i1dentifier, may be:

vold panda_datapath_clear func(struct panda_datapath

*datapath, unsigned int func_id)

An example for starting work, that 1s processing a data
object, 1n a datapath may be the following. datapath indi-
cates the datapath and work 1s a thread set work item
describing the work to do. If wait_work_queue 1s set to
“True” and the work must be queued but the queue limait 1s
reached, then the function will block until the work can be
queued or a thread set 1s started. Returns zero 11 a thread set
was successiully started, and returns non-zero if the work
queue 1s at 1ts limit and wait_work_queue 1s “False”.

int panda_datapath_start_work(struct panda_datapath

*datapath, struct panda_work_item_thread_set *work,
bool wait_work_queue)

An example for waiting for all running thread sets 1 a
datapath, indicated by datapath, to complete, may be:

vold panda_datapath_wait_all_thread_sets(struct panda_

datapath *datapath)

Network protocol processing may be modeled as a serial
processing pipeline, where different protocol layers of a
packet are processed 1n different stages of a pipeline. An
output result of protocol processing 1s an action that
describes the disposition of the packet. Actions are a small
set of simple primitives that includes dropping the packet,
tforwarding 1t, or receiving it locally. FIG. 11 provides an
example diagram of a four state serial processing pipeline
that might correspond to the protocol layer processing of a
QUIC/IPv4 over Ethernet packet.

Protocol parsing is the operation of identifying the pro-
tocol layers, typically protocol headers, in a packet, and
correspondingly a protocol parser 1s an entity that parses
some set of protocols. A protocol parser can be represented
as a parse graph that indicates the various protocol layers
that may be parsed and the relationships between layers.
FIG. 12 illustrates a protocol parse graph containing a
number of common networking protocols. The protocols
listed don’t represent the complete set of parseable proto-
cols, however they should be representative of the most
common flavors of protocol structure. In FIG. 12, network
protocols are indicated by solid rectangles in the graph.
Protocols are logically divided into three layers: network
layer protocols, transport layer protocols (e.g. TCP and
UDP), and encapsulated protocols in transport layers (e.g.
encapsulated protocols 1n UDP). Protocol switches deter-
mine transitions between protocol layers and are indicated
by ovals 1n the graph. Solid arrows indicate the flow moving,
down the graph. Dashed arrows indicate protocol encapsu-
lation and point to a higher layer protocol or switch. Dashed
rectangles indicate sub-options of a protocol (IPv4 options
for example). Options can be processed 1n a loop contained
within the corresponding higher protocol layer, or as nested
protocol layers themselves. Extension headers, such as IPv6
extension headers, are similar to options, however they are
not directly sub-options contained within a protocol header.
Extension headers are processed as multiple protocol head-
ers at the same layer by invoking the corresponding protocol
layer switch for each header. The backcall to the protocol
switch for extension header i1s not considered encapsulation.

The protocol processing pipeline for a packet would
constitute one particular path 1n the graph. The graph in FIG.
12 implies no limits on the number of headers 1 a packet,
however for practicality limits may be imposed. For
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instance, Linux limits the number of embedded protocol
encapsulations and extension headers that may be parsed 1n
a packet.

The processing done for a protocol layer 1s designed to be
done to maximize the amount of concurrent execution
whereby a general strategy for processing a protocol layer is:
determine the next protocol layer and start 1ts thread, resolve
dependencies as soon as possible, and wait on dependencies
as late as possible. It should be obvious to one of ordinary
skill in the art that the specifics may depend on the type of
protocol being processed and the dependencies that protocol
processing has on earlier layers. A rough template may be
described by considering the canonical processing done for
a non-parallelized implementation and adapting that for
vertical parallelism.

In packet processing there are four types of data that may
be accessed or modified: the packet, the packet metadata, the
context state, and global state.

The packet 1s a data object 1n the serial processing
pipeline for networking. A packet 1s assumed to be 1n a
contiguous buller, at least can be read that way. Information
about previous header layers should be accessed via meta-
data so that a protocol layer does not directly access packet
data for previous layers. A dependency i1s on an upstream
stage moditying a packet that could conflict with an upper
layer reading or modifying a packet. Examples of such
mechanisms that might create dependencies are decryption,
decompression, and Receive Checksum Ofiload.

Packet metadata 1s data that contains ancillary informa-
tion about the packet. This can include items such as packet
length, Ethernet addresses, IP addresses, transport layer
ports, etc. As the packet 1s processed by different layers,
cach layer can set or read information 1n the metadata.
Dependencies are used to synchronize read and write opera-
tions on metadata.

Context state 1s the external data in the serial processing,
pipeline. This could include connection or flow state
returned from a lookup. As the packet 1s processed 1n a
pipeline there may be several types of context state used by
different layers. Dependencies synchronize readers and writ-
ers of context state. IT an external agent writes state, a special
object can be 1njected into the pipeline to handle that.

Global state may be atomic counters that are shared
amongst different processing threads and so may need
atomicity or dependencies.

To adapt protocol processing to vertical parallelism,
dependencies between protocol layers need to be identified,
and wait and resolve points for those dependencies need to
be located 1n the code paths. In one or more non-limiting
embodiments, dependencies may take the form of context
information: a layer sets context information in the metadata
needed by later layers; accepted: packet 1s accepted by a
layer and will be processed accordingly; modified: any
modifications to a packet by the protocol layer are complete;
or done: protocol layer has completed processing.

Retferring to FIG. 13, a method for processing for a
protocol layer with vertical parallelism in some embodi-
ments of the mvention 1s described and shown.

At step 201, perform any forward modifications to the
packet that are needed to start processing the next header.
These are modifications of the packet beyond the current
header such as payload decryption for confidential packets
whereby a protocol header 1n a received packet contains an
encrypted payload and a private or public key 1s used to
generate a decrypted payload from the encrypted payload.

At step 202, start the next protocol layer thread which
may execute concurrently. This entails minimal parsing of
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the current layer to determine the protocol, offset, and
handler for the next layer. If a next protocol layer 1s present,
then start a worker thread for the next layer.

At step 203, basic sanity checks and checksum verifica-
tion (1f necessary) are done on the packet. The results are
then held.

At step 204, perform panda_thread_wait(context_infor-
mation) to wait on the dependency for mput from previous
layers to perform context lookup. This 1s typically a depen-
dency on a lower layer to write metadata information needed
for the context lookup.

At step 205, 11 basic samity checks are successtiul, perform
a context lookup and sanity checks with respect to the
returned context. The results are then held.

At step 206, perform panda_thread_wait(accepted) to
wait on the previous layer accepting the packet.

At step 207, determine 1f basic sanity checks were suc-
cessiul, and determine 1f the context lookup was successiul
and any necessary sanity checks on the returned context
were successiul. If any of the sanity checks failed or no
context was found and one 1s required then bump appropri-
ate counters and terminate the pipeline by calling panda_th-
read_kill_threads at step 208. If the sanity checks are
successiul and a required context was found 11 needed then
proceed to step 209.

At step 209, 1f necessary, write context information into
the metadata and resolve the dependency for context lookup
input by calling panda_thread resolve(context_informa-
tion).

At step 210, perform panda_thread_resolve_point(ac-
cepted) and process the packet as being accepted.

At step 211, bump appropriate counters that a properly
formatted packet was received.

At step 212, perform panda_thread_wait_point(modified)
to wait on previous layers that might modify the packet in
conilict with work done in this layer.

At step 213, perform any necessary modifications to prior
headers or to the current header. This includes possibly
popping previous headers. If the packet was modified then
perform panda_thread resolve(modified).

At step 214, m the mnitial thread, wait for worker threads
to complete and then perform any serialized tail processing
based on the returned action such as dropping or forwarding
packets.

At step 215, perform panda_thread_resolve(done) to indi-
cate that the layer has completed processing.

Note that not all of these steps will be applicable for each
protocol layer. For instance, 11 a protocol layer doesn’t need
external context information for a lookup, then 1t would not
need to wait on the context information dependency. Simi-
larly, i a protocol layer does not modity a packet then 1t will
not need to resolve the modily dependency.

A watcher might run some scenario where a watched
dependency 1s guaranteed to be resolved when the thread
starts. For instance, the thread processing an IP header might
have a metadata dependency on potential upstream threads
processing outer IP headers 1n network encapsulation; for a
thread processing the first IP header, or outermost one, the
dependency will always be resolved from the start or pro-
cessing. As an optimization, different variants of the func-
tion for a protocol layer could be maintained for diflerent
permutations of unresolved dependencies. A particular vari-
ant 1s optimized around the set of possibly unresolved
dependencies so that a variant may eliminate wait operations
for dependencies that are already known to be resolved 1n a
certain context. In the example of 1P header processing, this
might entail having one function that processes the outer-
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most IP header and another that processes IP headers when
they are encapsulated, where the former may assume that
some dependencies are automatically resolved.

As shown 1n FIG. 12 some protocols, such as IPv4 and
TCP, contain suboptions that might be processed as protocol
layers 1n a processing pipeline. To handle this, a stack for
processing nested protocol layers 1s employed. When a
protocol layer commences processing of nested options, a
descriptor of the current protocol (the one containing
options) 1s pushed onto a stack. Processing threads are
started by cascade or top function scheduling to process the
options. Options are processed 1n the context of the protocol
layer in which they are contained (e.g. a TCP option 1s
processed 1n the context of a TCP header). When the thread
for processing the last option has been started, typically
determined by reaching the end of the option space, the
descriptor on the stack 1s popped and indicates the next
protocol layer to process.

It 1s desirable to start threads to process protocol layers
quickly and efliciently to maximize parallelism. Starting the
next protocol layer requires two pieces ol information: the
type of the next protocol layer, and the length of the current
protocol header. The length of the current header implies the
oflset of the start of the next header. In conjunction with
parsing a protocol layer to start the next layer, the lengths of
protocol headers can be validated to lie within the extent of
the packet (or sub-layer i case of nested parsing). For many
protocols, these operations are amenable to hardware accel-
eration.

For most protocols, a protocol header 1s either fixed length
explicitly containing the length of the protocol header 1n a
field of the header, or the length can be easily deduced from
fields 1n the header. Examples of these may include: UDP,
IPv6, Ethernet, and VXL AN are protocols with fixed length
protocol headers; IPv4, TCP, QUIC, and GUE are protocols
that have an explicit header length at some fixed offset in the
respective headers; whereby for GRE, the header length may
be determined by the particular GRE flags that are set.

Referring to FIG. 14, a process for extracting the length
of protocols that include a header length 1n some embodi-
ments of the mvention 1s described and shown.

At step 301, identily the oflset in the header and the size
of the length field. The length field 1s typically a few bits or
one to four bytes 1n size. These are normally defined 1n the
protocol specification.

At step 302, ensure that the length field 1n the packet lies
within the extent of the packet (or sub-layer in the case of
nested protocol layers). This may be done using panda_o-
bject_check_length. I1 the length field 1s outside the bounds,
then the packet 1s considered 1n error.

At step 303, given the length field, apply endianness,
shifts, or other logic functions to derive the actual length.
Multi-byte length fields may be in network (big endian) or
little endian byte order, and some protocols express lengths
in units of four or eight bytes so that a shift (multiply)
function 1s needed to derive the real length.

At step 304, validate that the header with the discovered
length 1s within the bounds of the packet or sub-layer. This
may be done using panda_object_check length. If the length
1s short, then the packet 1s considered in error.

For identiiying the protocol of a header, it 1s common that
either a protocol header contains a field explicitly indicating
the next protocol, or for a protocol header itself to contain
a type field that 1s mterpreted 1n the context of the encap-
sulating protocol header. Ethernet, IPv4, IPv6, GUE, and
GRE are examples of protocols that contain an explicit next
header field; options in the form of TLVs, such as IPv4
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options and TCP TLVs, are self-identifying and are pro-
cessed 1n the context of TLV processing for an encapsulating
protocol; the protocol version of IP (IPv4 and IPv6) 1s
self-identifying via a version field in the IP header whereby
IP versions are also commonly distinguished by the next
header field mm an encapsulating protocol (e.g. there are
separate EtherTypes for IPv4 and IPv6).

Referring to FIG. 15, a process for the determination of
the next protocol layer type if a protocol layer contains a
next protocol field 1s described and shown.

At step 401, 1dentify the oflset 1n the header and size of
the next protocol type field. These are normally defined in
the protocol specification. The next protocol field 1s typically
a few bits, or one or two bytes.

At step 402, ensure that the next protocol field lies within
the extent of the packet (or sub-layer 1n the case of nested
parsing). This may be done using panda_object_check
length. If the header length has been previously validated,
then this step 1s unnecessary.

At step 403, perform a lookup 1n a protocol table for the
type. If no type 1s found, then the next header protocol 1s
considered unsupported and default processing may be
performed.

Referring to FIG. 16, a process for the determination of
the next header type if a protocol layer 1s self-identifying
(contains its own type field) 1s described and shown.

At step 501, identily the oflset 1n the header and size of
the protocol type field in the current header. This 1s specified
in the protocol specification. The protocol type field 1s
typically a few bits, or one or two bytes.

At step 502, ensure that the protocol type field 1n the
packet lies within the extent of the packet (or sub-layer in the
case of nested parsing).

At step 503, perform a lookup 1n a protocol table corre-
sponding the context of the layer being parsed. I no type 1s
tound, then the protocol type i1s considered unsupported and
default processing may be performed.

Note 1n the presence of nested protocol layering, both
methods may be used. For mstance, an IPv6 Hop-by-Hop
extension header has both a next protocol field and also
contains a list of option TLVs that are self-identifying. As
described earlier, the options are parsed first and then the
next protocol field 1s processed.

A unified dispatch function may then be defined as
panda_parse_dispatch_next that may perform three func-
tions including: determining the length of the current pro-
tocol header and verifying it 1s within the extent of the
packet or sub-layer, the length implying the ofiset of the next
protocol layer; determining the type of the next protocol
layer; and dispatching a thread to process the next layer
according to the determined type. Input to this function may
include a set of parameters specific to the current protocol
layer being processed, such as the fixed length of the header
or the oflset, size, endianness, and shiit of the length field 1n
a protocol header; and the oflset and size of the next protocol
field 1n the protocol layer or the ofiset, size, and endianness
ol the protocol type field for self-identifying protocol head-
ers.

The parameters allow systematic determination of the
length of the current protocol layer and the type of the next
layer. Note that not all protocol layers can be dispatched
automatically using this facility. In some cases, more work
will be needed to determine the next protocol and length as
would be the case when a protocol layer 1s encrypted.

A unified dispatch may be called 1n a tight loop by a top
function performing top function scheduling, FIG. 7 1llus-
trates an example of this. Conceivably, such a function could
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be accelerated 1n a hardware parser/scheduler function. If
dispatch processing for all the protocol layers 1n a packet 1s
readily accelerated in this manner, then conceptually all the
protocol layer threads for the pipeline could be dispatched
by a hardware scheduler without software intervention.
Accelerating this function would be a matter of implement-
ing a thread scheduler and programmable parser in hard-
ware. The two required operations for parsing, extracting the
next protocol type and length of the current header, can, for
most common networking protocols, be expressed as load
operations for fields 1n packet headers and simple arithmetic
operations on those fields (such as a byte shift to determine
IP header length from the four bit length field of an IP
header). These operations should be feasible to hardware
implementation 1n a programmable fast path.

This section describes a design for parallelism 1n serial
pipeline processing 1 eXpress Data Path (XDP). XDP 1s a
fast and programmable datapath first introduced in Linux as
a means to run generic packet processing code directly 1n
NIC receitve functions. XDP employs extended Berkeley
Packet Filter (eBPF) as the byte code representation of
programs. FIG. 17 demonstrates XDP with vertical paral-
lelism. The PANDA API will be supported in XDP via helper
functions. Each protocol layer can be processed by separate
eBPF code functions, and lookup tables in the program
structure map protocol layers to the functions to process
them.

The PANDA API will be supported 1n XDP via helper
functions. Each protocol layer can be processed by separate
¢BPF code functions, and lookup tables in the program
structure map protocol layers to the functions to process
them. When a packet arrives, the XDP 1mput function 1s
called. The input function serves as the dispatcher for the
protocol processing of the packet and may be instantiated as
the top function for a thread set. As described above, parallel
threads for processing various layers of a packet are created
by cascade or top function scheduling. An eBPF helper
function would perform the unified protocol dispatch of
parsing a packet and scheduling processing threads. The
helper function could 1nvoke the PANDA Parser (described
below). The helper function parser would implement sched-
uling for worker threads which could 1invoke callbacks into
XDP for the protocol node and parse node functions. In the
case of top function scheduling, the helper tunction would
schedule each of the threads for processing an object. In
cascade scheduling, the helper would schedule the first
worker thread, and then each worker thread could i1nvoke
another helper function to schedule the next worker thread
in the pipeline. In etther scheduling case, the number of
threads could be limited as necessary to ensure that the
kernel does not go into a long or even an infinite loop
(following the design philosophy of XDP/eBPF to promote
robustness).

The granularity of the protocol layers 1s arbitrary. For
instance, an implementation may only consider top level
protocol processing (TCP, 1Pv4, IPv6) so that protocol
options of these are processed 1n the same thread as the
higher protocol layer. Alternatively, the options themselves
could be parsed to create a processing thread for each one.
All threads have access to the packet data and metadata
memory for the packet. Both of these are writeable, so it
multiple threads might write to the same 1tem so as to create
the possibility of a contlict then a dependency 1s needed for
synchronization. The metadata includes a returned XDP
action (one of receive local, drop, abort, forward, or redi-
rect). Once all of the threads have been started, the dis-
patcher waits for the threads to fimish (by calling panda_th-
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read_wait threads 11 the dispatcher thread 1s attached to the
thread set, and calling panda_thread_set_wait_threads 11 it
didn’t attach). When the function returns, packet processing
has been completed and the disposition of the packet 1s
contained 1n the action field of the metadata. The action 1s
processed like any other use case of XDP. Once the action
has been handled, the dispatcher thread reinitializes and can
proceed to process the next packet.

If a thread determines that a packet needs to be dropped,
it sets the action field and kills all the following threads
(panda_thread_kill_threads). Only one action can be
returned by the threads 1n a pipeline. If multiple threads set
the action 1t 1s expected the action set by the last thread 1s the
one that 1s applicable to the pipeline. Note that 1f a thread
kills the pipeline due to an error condition, that thread should
set the action and hence that would be returned as the action
from the pipeline (1n this case, later threads are killed before
they can set the action). If multiple threads can set the action
then a dependency like “okay to set action™ could be
employed. A thread that blocks this dependency would
resolve it at a resolve point 1n the code after which the thread

will not set the action. A thread that needs to set the action
would wait on this dependency before setting the action.

The PANDA Parser 1s a framework and API for program-
ming protocol parser pipelines that utilizes the mechanisms
and API of PANDA for parallelism and serial data process-
ing as described in this architecture. Protocol parsing is a
fundamental operation in serial data processing such as
networking processing. A protocol parser can be represented
as a parse graph that shows various protocol layers that may
be parsed and the relationships between layers (for example
FIG. 12 demonstrates this). The processing of one data
object can be thought as one “walk 1n the parse graph™. At
cach node 1n the graph, the corresponding protocol layer of
a data object (protocol header 1 networking parlance) is
parsed and processed. Processing may include validations,
extracting of metadata from the protocol layer, and arbitrary
protocol processing. Parsing 1s driven by a parser engine that
performs the parse walk and calls processing functions for
cach layer. The parser engine parsers top level protocols,
TLVs, and flag-fields.

The fundamental data structures of the PANDA parser are:
protocol nodes, parse nodes, protocol tables, and parsers. A
protocol node provides the properties and functions needed
to parse one protocol 1n a parse graph to proceed to the next
protocol 1n the parse graph for a packet. A protocol node
contains common characteristics that retlect the standard
protocol definition (for instance there i1s only one standard
procedure to determine the length of an IP header). As
mentioned above, the parse walk over a protocol node
requires determining the protocol type of the next node and
the length of the current node. A protocol node has two
corresponding functions that are implemented per a specific
protocol: len: returns the length of the current protocol layer
(or protocol header), next_proto: returns the protocol type of
the next layer.

A parse node 1s an instantiation of one node 1n the parse
graph of a parser being defined. A parse node includes a
reference to the protocol node for the specific protocol, as
well as customizable processing functions. A parse node
allows defimng two optional functions: extract metadata
which extracts metadata, e.g. protocol fields, from a protocol
header and saves 1t in the metadata memory, and han-
dle_proto which performs arbitrary protocol processing.
This function may mmplement the full logic of protocol
processing.
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A protocol table 1s a lookup table that takes a protocol
number as input as the protocol type of the next protocol
layer, and returns the parse node for the next layer. The
protocol numbers can be the canonical protocols numbers,
for instance a protocol number might be an IP protocol
number where the table contains parse nodes for various IP
protocols (e.g. for TCP, UDP, etc.). Non-leal parse nodes
have a reference to a corresponding protocol table, for
instance, a parse node for IPv6 would refer to a protocol
table that takes an IP protocol number as input and returns
the parse node for the corresponding IP protocol.

A parser defines a parser and includes a set of parse nodes,
cach having a reference to a protocol node. Non-leaf parse
nodes have a reference to a protocol table.

The parse nodes are connected to be a graph via the
relationships set 1n the protocol tables. The parser can be
represented as a declarative data structure in C and can
equivantently be viewed as a type of Finite State Machine
(FSM) where each parse node 1s one state and transitions are
defined by next protocol type and associated protocol tables.
A parser defines a root node which 1s the start node for
parsing an object (for networking the root 1s typically

Ethernet). FIG. 18 illustrates a simple parser for canonical
TCP/IP over Ethernet including example parse nodes and
protocol nodes for Ethemet, IPv4, and TCP.

Type-Length-Value tuples (TLVs) are a common net-
working protocol construct that encodes variable length data
in a list. Each datum contains a Type to discriminate the type
of data, a Length that gives the byte length of the data, and
a Value that 1s the bytes of data. TLVs are parsed in the
context of a top level protocol, for instance TCP options and
IPv4 options are represented by TLVs parsed 1n the context
of a TCP header and IPv4 header respectively. A protocol
node with TLVs 1s an extended protocol node that describes
a protocol that includes TLVs. A protocol node with TLVs
provides the properties and functions to parse TLVs 1n the
context of a top level protocol and includes three operations:
tlv_len, tlv_type, and tlv_data_oflset. The tlv_len function
returns the length of a TLV (and therefore the oflset of the
next TLV), tlv_type returns the type of a TLV, and tlv_
data_oflset returns the oflset of the data within a TLV. Note
that tlv_len returns the length of the whole TLV including
any TLV header, so the length of just the data in a TLV 1s the
total length of the TLV, as given by tlv_len, minus the oflset
of the data as given by tlv_data_oflset.

A parse node with TLVs 1s an extended parse node that

has reference to a protocol node with TLVs and a TLV table.
A TLV table 1s a lookup table that takes a TLV type as input

and returns a TLV parse node for the TLV. ATLV parse node
describes the processing of one type of TLV. This includes
two optional operations: extract_tlv_metadata and hand-
le_tlv. These have the same function prototypes as the
similarly named functions defined for a parse node (see
above) where extract_tlv_metadata extracts metadata from a
TLV and places it into the metadata structure, and handle_tlv
allows arbitrary processing of the TLV.

FIG. 19 illustrates a simple PANDA parser that includes
a TLV parse node for IPv6 Hop-by-Hop Options. The TLV
parse node contains both a parse node for the Hop-by-Hop
extension header and fields for parsing the options within the
extension header. The associated TLV table contains one
entry for extracting data from the Jumbo payload option.

Flag-fields 1s a common networking protocol construct
that encodes optional data in a set of flags and data fields.
The flags indicate whether or not a corresponding data field
1s present. The data fields are fixed length and ordered by the
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ordering of the flags indicating the presence of the fields.
Examples of protocols employing tlag fields are GRE and
GUE.

A flag-field structure defines one flag/ficld combination.
This structure includes: flag, mask, and size fields. The flag
value indicates the flag value to match, the mask 1s applied
to the flags before considering the flag value (i.e. a tlag 1s
matched 11 flags & mask==flag), and size indicates size of

the field.
A protocol node with flag-fields 1s an extended protocol
node that describes a protocol that includes flag-fields. A
protocol node with flag-fields has two flag-fields related
operations: flags returns the flags 1n a header and fields_ofl-
set returns the offset of the fields.
A parse node with flag-fields 1s an extended parse node
that has a reference to a protocol node with flag-fields and
a flag-fields table. A flag-fields table 1s an array of tflag-field
structures that defines the parseable flag-fields for a proto-
col. A flag-fields table may be defined 1n conjunction with a
protocol node definition and 1s used by functions of the
protocol node or parse nodes for the protocol.
FI1G. 20 1llustrates a simple PANDA parser that includes
a parse node for GRE and handling for GRE flag-fields. The
associated flags-field table contains an entry and flag field
parse node for extracting data from the GRE KeyID field.
The PANDA Parser API defines data structures, functions,
helper functions, for instantiating and invoking a PANDA
parser mstance.
A structure that describes parsing of one protocol may be
the following. The structure includes two operations that
may be set: len returns the length of the protocol layer, and
next_proto returns the type of the next protocol layer. The
structure 1ncludes flags for an encapsulation protocol and
overlay protocol, and minimum length of header.
struct panda_proto_node
The prototypes for len and next_proto are: int (*len)(void
*hdr) and 1nt (*next_proto)(void *hdr) where hdr 1s the
pointer to the data of the current protocol header being
processed. If the return value 1s negative this indicates an
eITor.
A structure that represents one instantiated node 1n a
parser’s parse graph may be the following. The structure
refers to a panda_proto_node for the protocol to be parsed.
The structure includes two operations that may be set for
custom processing: extract_meta_data extracts metadata
from a data object and sets 1t in metadata, and handle_proto
performs arbitrary processing for the protocol layer.
struct panda_parse_node
The prototypes for these are:
void (*extract_metadata)(void *hdr, void *common, void
*Trame)

vold (*handle_proto)(void *hdr, void *common, void
*Tframe)

where hdr 1s the pointer to the first byte of the current
protocol header being processed, common 1s a pointer
to the common metadata and frame 1s a pointer to the
current metadata frame (based on the internal frame
index for the layer).

A structure for a protocol table may be the following. This
contains an array of panda_proto_table entry structures
cach of which contains a value field and a pointer to a parse
node.

struct panda_proto_table

A structure containing the metadata for a parser may be
the following. The structure 1s composed of a number of
common fields followed by a variable array of metadata
frame structures.

struct panda_meta_data
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A metadata frame contains the custom metadata fields set
by parse nodes of a parser. Each frame refers to the metadata
collected for one level of encapsulation. The panda_meta_
data structure contains the number of frames in the array and
the number of encapsulations encountered in a walk; the
number of encapsulations 1s used as the frame index into the
metadata frames table to return the current frame 1n which
metadata 1s to be written. Encapsulation 1s a property as a
flag 1n protocol nodes; when a marked protocol node 1is
encountered the number of encapsulations 1s incremented. If
the number of encapsulations 1s greater than or equal to the
number of frames 1n the array, then the last frame 1s selected.

A structure that defines a PANDA parser may be the
tollowing. This primarily contains a pointer to the root parse
node, that 1s the parse node at which the parse walk
commences (1n the case of networking the root node might
typically be a parse node for Ethernet).

struct panda_parser

A helper macro to create a parse node may be the
following. parse_node 1s the name of the parse node being
defined, proto node 1s the associated protocol node, extract
metadata 1s the function to call to extract metadata, handler

1s the function for custom protocol logic processing, and
table 1s the associated protocol table.

PANDA_MAKE_PARSE NODE(parse_node,

node, extract_metadata, handler, table)

A Helper macro to create a protocol table may be the
following. name 1s the name of the protocol table. The
entries for the table are a vaniable argument list composed of
{value, node} pairs where value is the protocol number to
match and node 1s the name of a parse node.

PANDA_MAKE_PROTO_TABLE(name, entry, . . . )

A helper macro to create a PANDA parser may be the
following whereby name 1s the name of the parser, text 1s the
text name for logging purposes, root 1s the parse_node that
1s the root.

PANDA_MAKE_PARSER(name, text, root)

A function to mvoke a PANDA parser to parse a data
object may be the following whereby parser contains the
root node, data 1s a pointer to the data object to parse, len 1s
the length of the data object, metadata 1s a pointer where
extracted metadata 1s written, flags provides parameteriza-
tions, and max_encaps 1s the maximum number of encap-
sulations that may be parsed.

int panda_parse(struct panda_parser *parser, void *data,

unsigned int len, struct panda_meta_data metadata,

unsigned int flags, unsigned 1t max_encaps)
The function returns a code indicated by PANDA_STO-

P reason. Reasons include  OKAY, LENGTH,
UNKNOWN_ PROTO, ENCAP_DEPTH, etc.

An extended panda_proto_node structure that provides
the methods for parsing TLVs associated with the protocol
of the protocol node may be the following. The structure
includes three TLV related operations: tlv_len returns the
length of the TLV, tlv_type returns the type number for the
TLV, and tlv_data_oflset gives the ofiset of the data.

struct panda_proto_node_tlvs

Prototypes for these are:

int (*tlv_len) (void *hdr)

int (*tlv_type) (void *hdr)

unsigned it (*tlv_data_oflset)(void *hdr)

where hdr 1s the pointer to the first byte of the current

protocol header being processed. If the return value 1s
negative this indicates an error.

A structure that describes the customizable processing of
one TLV type may be the following. The structure includes

proto_
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two operations: tlv_extract_metadata to extract metadata
from the TLV, and handle tlv to perform TLV processing.
struct panda_parse_tlv
Prototypes for these are:
void (*extract_tlv_metadata)(void *tlv, void *common, °
vold *frame)
void (*handle tlv) (void *tlv, void *common, void
*frame)
where tlv 1s the pointer to the TLV being processed,
common 1s a pointer to the common metadata and
frame 1s a pointer to the current metadata frame
A structure for a TLV table may be the following. The
table 1s composed of an array of structures each of which
contains a TLV type field and a pointer to a panda_parse_tlv
structure.
struct panda_proto_tlv_table
An extended panda_parser node structure that provides
the handling of TLVs for the protocol associated with the
parse node may be the following. The structure primarily 20
includes a reference to a panda_proto_tlv_table.
struct panda_parse_node_tlvs
An extended panda_proto_node structure that provides
the methods for parsing flag fields associated with the
protocol of the protocol node may be the following. The 25
structure includes two flag-field related operations: flags
returns the flags 1n a header and fields oflset returns the fields
in the protocol header.
struct panda_proto_node_tlag_fields
The prototypes are: 30
int (*flag_fields_oflset)(void *hdr)
unsigned mt (*flag_fields_oflset)(void *hdr)
where hdr 1s the pointer to the first byte of the current
protocol header being processed. I the return value 1s
negative this indicates an error. 35
A structure that describes a single flag field may be the
following. It 1s composed of: tlag, mask, and size. flag is the
value of the flag, mask 1s and’ed with the protocol tlags

before comparing to tlag, and size 1s the size in bytes of the
associated data field. 40
struct panda_flag field

A structure that describes the customizable processing of
one flag-ficld may be the following. The structure includes
two operations: flag_field_extract _metadata to extract meta-
data from the flag field, and handle_flag_field to perform 45
flag field processing.

struct panda_tflag_parse node

Prototypes for these are:

void (*flag, field_extract_metadata)(void *field, struct

panda_tlag_field *flag field, void *common, void 50
*Trame)

vold (*handle_flag_field)(void *field, struct panda_flag_

field *flag_field, void *common, void *frame)

where field 1s the pomter to the field being processed,

flag_field 1s a pointer to the descriptor structure for the 55
field, common 1s a pointer to the common metadata,
and frame 1s a pointer to the current metadata frame.

A structure that contains an array of structures each
contaiming a panda_tflag_field structure and a pointer to a
panda_{tlag_field_proto_node structure may be the follow- 60
ing.

struct panda_tlag_fields_table

An extended panda_parser_node structure that provides
the handling of flag fields for the protocol associated with
the parse node may be the following. The structure primarily 65
includes a reference to a panda_flag_fields table.

struct panda_parse_node_tlag_fields
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An example for returning the sum of data field lengths
corresponding to the flags 1n flags may be the following,
whereby flag fields i1s pointer to a panda_flag field_table
structure that describes parsing the flags-field for a protocol.

int panda_flag fields_length(unsigned mt tlags, struct

panda_tlag_fields *flag_fields)

An example for returning data field offset for a flag as
determined by the flags set 1n flags may be the following,
whereby 1dx 1dentifies the flag being tested as an index into
the table 1n flag fields

int panda_flag_fields_oflset(unsigned 1nt 1dx, flags, struct

panda_flag fields *flag_fields)

An example for a helper function to get the value of the
data field for some flag may be the following. * indicates the
return type in a number of bits and can be 8, 16, 32, or 64
whereby fields 1s a pointer to the fields data in the object, 1dx
refers to the flag being queried and i1s an index in the
flag fields table, and flags are the tflags from the object being

parsed.

panda get_flag field *(fields, 1dx, flags, tlag_fields)

Logically, this function returns

(cast type_™)fields[panda_{flag fields oflset(idx, {flags,

flag fields)]

The extent of benefits of parallelism for a serial process-
ing pipeline are dependent on several characteristics of an
implementation: the underlying hardware architecture and
the efliciency of interactions between hardware and soft-
ware, the API and programming model, the system overhead
associated with parallelism, how much concurrency can be
achieved 1n processing a workload, memory organization
and etliciency of data structures, and related optimizations
tacilitated by vertical parallelism.

The hardware architecture can be a described Domain
Specific Architecture (DSA) for programmable network
processing. The goal of the architecture 1s a programmable
and high performance networking dataplane that 1s exten-
sible, modular, and scalable to meet the requirements of
different deployment targets. The architecture can be gen-
eralized to accommodate other use cases for serial pipeline
processing.

The major elements of the hardware architecture are:
CPUs and programmable processors, Memory and address
formats, Hardware scheduler and dependencies, and accel-
erators.

FIG. 21 provides a block diagram of a possible hardware
architecture. In the dlagram arrows 1ndicate mput PDU
paths into the processing including mput from network,
moditying transforms, and reassembled PDUSs. Arrows indi-
cate output paths.

The general flow of processing 1n a network dataplane 1s:
1) Receive a packet from the network. Bits are deserialized
to packets, or more specifically frames. Commonly, Ethernet
1s the link layer protocol for this. 2) Process the packet (or
PDU 1n more general terms). This entails validations, match/
action table lookup, packet filtering, encapsulation/decapsu-
lation, and transforms like encryption and decryption. Trans-
form processing may be performed by accelerators. 3)
Optionally, queue packet. This would be a non-work con-
serving path for packet reassembly and segment reassembly
for a transport protocol. Once a protocol data unit 1s reas-
sembled, 1t can be submitted 1nto the pipeline as an upper
layer PDU. 4) Take appropriate actions as a result of packet
processing. Actions include: drop, forward, queue for reas-
sembly, and local packet receive. Note that after processing
the resulting packet may be substantially different than the
one that was mnput.
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PANDA 1s most naturally defined as a library for serial
datapath processing. For C this would be the PANDA-C
library. The library 1s adaptable to various environments
including DPDK, as a library with integrated DPDK tunc-
tions, and eBPF, where PANDA can be instantiated via eBPF
helpers. The structure of the PANDA parser facilitates
vertical parallelism where the processing and operation of
different parse nodes execute concurrently. The PANDA
parser engine can manage and schedule threads for concur-
rent execution. Dependencies can either be explicit by the
programmer, or a PANDA Parser aware compiler can create
the appropriate dependency graph and populate wait and
resolve points accordingly. Protocol processing 1s imple-
mented 1n software that must be compiled to run on a
particular piece of hardware. An optimizing compiler that 1s
aware ol parallelism for serial pipeline processing (specifi-
cally the PANDA API and structure of the PANDA Parser)
and hardware accelerations may be istrumental to structur-
ing the pipelines, 1dentifying dependencies, and populating
wait and resolve points. It 1s concervable that a compiler
could start with serialized code for packet processing and
produce a set ol programs that implement a parallelized
processing pipeline

A compiler that optimizes parallelism 1n a serial process-
ing pipeline might do the following:

Identily stages and build a tlow graph for pipeline execu-
tion (the PANDA Parser structure makes this feasible)

Build the dependency graph from activities of protocol
layers in the flow graph to identily dependencies.

For each dependency identity wait points and resolve
points.

Insert wait and resolve primitives at wait points and
resolve points respectively.

Arrange code path to maximize the amount of parallelism.

Integrate hardware accelerations into the processing path.

Enforce semantics for safe execution. For instance,
dependencies are always unidirectional and pipeline threads
always run to completion.

Produce a set of executables that process various protocol
layers.

A compiler can be extended to understand the structure of
a PANDA parser and to optimize compilation of the parser.
The various functions of a parse node, for instance the
protocol node function to get length and next protocol or the
parse node functions to extract metadata, may be unrolled to
execute directly 1mn a linear sequence 1n lieu of procedure
calls. Similarly, adjacent parse nodes 1n the graph may be
unrolled 1 a linear executable without the overhead of
procedure calls. One potential strategy 1s to unroll the whole
parse graph except for back links to early nodes that are
present for protocol encapsulation

CPUs, or more generally programmable processing units,
are inline with the high performance datapath in this archi-
tecture. This 1s made feasible by use of vertical parallelism,
accelerators, fast memory and fast data movement opera-
tions. Note these are not “general purpose CPUs”, but CPUs
that have been specifically enhanced to support this archi-
tecture. Such enhancements include modifications to CPU
Instruction Set Architecture (ISA), and 1t 1s expected that
domain specific mstructions may be added to the CPU {for
specific PANDA API operations, memory access, and accel-
erations. RISC-V 1s an example of an open ISA that provides
an opportunity for such enhancements. Processing 1s pri-
marily driven by a program that runs on the CPU. Programs
are written using the PANDA programming model and
invoke 1ntegrated accelerations specific to a particular
instantiation in hardware of the architecture. Programs are
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compiled to specific hardware target backends. The parser 1s
expressed 1n declarative form as described above, and a
“parsing engine” drives the flow of packet processing.

CPUs can be arranged in different configurations to
support both vertical and horizontal pipelines. The program
orchestrates the creation and running of the pipelines. Pro-
cessing CPUs do not need to run an Operating System such
as Linux, mnstead they can run 1n “bare metal” with event
loops that are deterministic real-time processing in “polling
mode”. Asynchronous events, such as interrupts, are not
needed by the CPUs 1n this architecture. When a CPU 1s
blocking on a dependency 1t may go to sleep to conserve
power as long the wakeup time 1s tolerable for meeting
latency requirements. When protocol layer processing 1s
invoked a number of parameters are passed to the CPU
handling a layer (for instance, these could be pushed to
registers of the target CPU). Parameters may include: pro-
gram to run (could be jump address pushed into the CPU
PC), pointer to metadata, current metadata frame, pointer to
first byte of layer to process in parsing bulfler, reference
pointer for PDU (including backend payload, and IP check-
sum of packet starting from the layer being processed).

In this architecture there are three types of memory: CPU
local memory, CPU set shared memory, and external
memory. The data needed for thread processing 1s contained
in high speed memory that 1s directly accessed by CPUs. The
memory 1s expected to have low access latencies similar to
L1 caches, however for performance this memory 1s not
considered to be a normal L1 cache. This memory 1is
explicitly managed to never incur cache misses, consistency
and access synchronization are managed by software primi-
tives, and no TLB 1s required. The local memory for a data
object might be limited to include only the data for the data
object that will be processed in the CPU, 1n particular the
data object memory might be a fixed sized parsing builer
that contains the first N bytes of an object (1in networking the
parsing buller would contain a number of bytes of headers
that need to be processed).

CPU local memory 1s very fast memory that contains the
local memory data described 1n the memory model section.
This memory may be an SRAM that 1s co-located with a
CPU similar to an L1 cache. Unlike a traditional cache, CPU
local memory 1s not part of the memory hierarchy; there are
no cache misses and no need for a Translation Lookaside
Buffer (TLB). CPU local memory can be divided into
dedicated regions that are allocated to CPU threads, and
cach thread may assume mutual exclusion for accessing 1ts
region.

CPU set shared memory 1s also very fast memory that 1s
shared amongst a cooperative set of CPUs. Similar to local
memory, this memory 1s not a cache; there are no cache
misses and no TLB 1s necessary. This memory contains data
object memory and object metadata. The memory i1s read-
able and wrtable. Synchronization and consistency are
provided by dependencies as described above. In a normal
memory hierarchy, CPU set shared memory would be at the
level of an L2 cache; in particular the memory may be
shared amongst the cores of a CPU. In an expected design
manifestation, the threads within a thread set would map to
the hardware threads on one CPU, thus the metadata and
data object structures would be located in the corresponding
CPU set shared memory for the CPU.

External memory 1s other system memory that might
contain packet data (beyond the headers 1n a parsing buller
which would be 1n CPU set shared memory), lookup tables,
object queues, etc. External memory would typically be
RAM. PANDA threads do not access external memory




US 12,026,546 B2

45

directly, but instead rely on accelerators and external
memory managers to move data from external memory to
local CPU memory or CPU set shared memory and to
provide access synchronization as needed.

Before a thread (or thread set) 1s scheduled to run, all the
data that will be needed for processing 1s populated 1n the
CPU local memory and CPU set shared memory. This
includes loading the parsing builer for a packet into CPU set
shared memory, mitializing metadata in CPU set shared
memory, and moving return results from an acceleration
function into local memory (for istance, placing the result-
ing data structure that 1s returned from a TCAM lookup).

To minimize overheads of parallelism, hardware or CPUs,
and the operating system should support very lightweight
hardware threads. These threads are ephemeral, non-pre-
emptible, and non-yielding. Each thread runs a simple event
loop such that there 1s no need for context switches. Threads
are created in groups of threads (thread sets) and run small
programs identified by thread functions. A vertical process-

ing pipeline can be instantiated by a thread set where the
constituent threads process various stages ol the pipeline.
The time to start a thread should be mimimized. Each thread
should have 1ts own register window where a few registers
are 1nitialized with arguments to the thread. Starting threads
1s serialized by virtue of the thread cascade or top function
models, so only one thread 1s eligible to create a thread at
any given time for the thread set. Threads do not indefinitely
block or require scheduling, all the threads 1n a thread set run
to completion 1n the context in which they were created
(schedulable thread, mterrupt, NAPI thread, etc.).

In this architecture, threads are grouped together into
thread sets. Multiple thread sets may be created to run in
parallel as multiple pipelines 1n horizontal parallelism.
Threads within a thread set are tightly coupled 1n that they
operate on the same packet in vertical parallelism, and
metadata and processing i1s driven by fine grained depen-
dencies. A hardware implementation may correspondingly
partition threads. One conceivable architecture 1s to run on
CPUs that support a number of hardware threads corre-
sponding to the threads in a vertical pipeline to provide
unconstrained parallelism.

Thread pools may be used to allow flexible scheduling.
When selecting a thread for processing a stage, the thread
pool 1s queried to allocate a thread. Threads are not neces-
sarilly commuitted to always run the same protocol layer,
however an optimization for locality might be to try to use
the same thread that previously processed the same type

layer. For common protocol layers, such as IPv4 and IPv6,
reusing the same hardware thread 1s potentially beneficial 1f
an instruction cache or data cache 1s already populated (is
“hot”) with data used by the protocol layer processing.

A hardware implementation may provide native support
for the wait and resolve primitives conforming to behavior
described earlier 1n the specification. A wait primitive may
be similar 1n spirit to the common mwait mstruction that
suspends execution of a thread until a memory location 1s
written. Wait must be implemented as “conditional wait” to
avoid race conditions. The semantics of the resolve primitive
are to signal the resolved dependencies to downstream
pipeline threads waiting on the dependency.

When designing a high performance networking stack
both the software architecture as well as capabilities and
limitations of the targeted hardware must be considered.
Inevitably, there are tradeoils to be made to elicit a practical
and cost eflective design. For instance, 1t 1s olten the case
that techniques offering better resource utilization incur
higher latencies. Similarly, improving the average case of a
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system may degrade the worst case and vice versa. Also,
there are always trade-oils between cost, performance, flex-
ibility, and power.

A pertinent question in designing vertical parallelism 1s
how resources should be dedicated to pipeline processing. In
particular, how many threads (or cores) should be allocated
for vertical parallelism. Generally, providing more resources
improves performance (up to a point), but also increases
COSsT.

As an example, consider the core count of CPUs. At the
low end, CPUs, such as an ARM Cortex-A57MPCore, have
low core counts which implies constrained vertical parallel-
1sm 1s needed. At the high end, CPUs are trending towards
higher core counts—ior nstance an AMD Threadripper 2
CPU has up to thirty-two cores and sixty-four threads.
Ostensibly, a high core count means that unconstrained
parallelism could be used, however it might be impractical
or costly to dedicate all the cores to a single vertical pipeline.
To be cost effective, it may be prudent to have multiple
horizontal pipelines execute 1n the same CPU. This works 11
the average pipeline depth 1n a workload 1s much less than
the maximum possible depth. However, if the system 1s
under provisioned and encounters a workload needing deep
pipelines, 1t 1s possible that 1t could not keep up with a
maximum packet rate. Such considerations are relevant to
mitigations for Demal of Service (DOS) attacks.

The canonical model of processing for an Ethernet device
1s to deserialize the bits 1n frame, perform a running CRC32
computation over received bytes, verily the Frame Check
Sequence (FCS) at the end of the frame, DMA received data
into host memory, and 1f the frame 1s valid then signal the
host that a packet has been recerved. Host processing does
not commence until the hardware has completely recerved
the packet and the host has been signaled that there 1s a
received packet in 1ts memory. Cut-through 1s a technique
implemented 1n Ethernet switches that makes forwarding
decisions based on the headers of a packet and can com-
mence serializing the packet for transmission on a forward-
ing interface even betfore the full packet has been received.

The concept of cut-through can be generalized and
adapted for use with vertical parallelism 1n packet process-
ing. In this case, one stage 1n a pipeline produces, or streams,
data that 1s consumed by a later stage in the pipeline. The
later stage may begin processing the data betfore 1ts whole
length has been streamed.

The Fthernet deserialization function of a SerDes could
be considered the zero’th stage 1n a networking processing
pipeline. Protocol processing stages are specifically depen-
dent on the portion of the packet that contains the corre-
sponding protocol headers, so a dependency can be defined
between a protocol processing stage and the zeroth stage that
N bytes have been received and are available for processing.
N would be the minimum length of the recerved packet that
includes the protocol headers that a stage processes.

This introduces a specialized dependency value “length
received” and a dependency “frame received”. Stage 0 1s the
blocker for these dependencies. The length received 1s
dynamic depending on the state of deserialization:

While the frame 15 being desenalized, the length received
of the packet 1s monotonically increasing.

Once the deserialization 1s complete and the whole frame
has been received, the received length indicates the final
length of the frame and the “frame received” dependency is
resolved.

In both protocol parsing as well as protocol layer pro-
cessing, the data object length 1s commonly checked it a
protocol layer header lies within the extent of the packet. A
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dynamic “length received” value implies resolve and wait
points for these dependencies. The panda_object_check
length API function 1s used to check the dynamic length and
1s the wait primitive for the “length received” and “frame
received” dependency. Consider the following check it there
1s enough received bytes for an IPv6 header:

if (panda_object_check length(sizeof(ipv6hdr)) {

/* Process IPv6 header */

Ielse {

goto drop_packet
h

The tunction panda_object_check_length returns “True”
if enough bytes have been received so that the condition 1s
satisiied and the IPv6 header may be processed. The func-
tion panda_object_check length returns “False” 1f the
packet has been {fully received (“frame received” 1s
resolved), but not enough bytes were received to cover the
IPv6 header. The packet may then be dropped.

If the packet 1s still 1n the process of being recerved
(“frame recerved” 1s not resolved), and an insuthcient num-
ber of bytes have been received to satisty the condition, then
panda_object_check_length performs a conditional wait that
the length received becomes greater than or equal to the
input value or “frame receirved” 1s resolved. On return from
the conditional wait, 1f the condition has been satisfied
(enough bytes have been received) then “True” is returned.
Otherwise an insuflicient number of bytes have been
received (and “frame received” 1s resolved) so “False” 1s
returned.

Accelerators provide hardware acceleration for common
operations. There are several categories: table lookup, integ-
rity checks, moditying transforms, tlow state managers,
TCAMSs lookups, queuing, etc. In this architecture, accel-
erators are mvoked by instructions executed by the CPU.
Accelerators can be integrated into the CPU, or may be
external functions supported in FPGAs for instance.

A consequence of combining programmability, flexibility,
and a high performance datapath based on accelerations 1s
that not all implementations will support the same set of
features. When compiling a program to a backend target, the
requirements of features used in the program need to be
rectified with the capabilities of the target. There are three
possible dispositions for some feature or set of features in a
program: The target environment 1fully supports all
requested features and the program will run. The target
environment supports some features but in a sub-optimal
way, for mstance a transform might not be accelerated in
hardware but could be computed 1n soitware as a fallback,
in this case the program can run but with degraded perfor-
mance. The target environment does not support the fea-
tures, and the program will not run in the target environment.
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bytes 1n a packet as mput and perform a computational
algorithm over those bytes. Most commonly transforms 1n
networking operate on the payload of some protocol. Some
examples of transforms are Ethernet CRC, TCP and UDP
checksum, Hash-based Message Authentication Codes
(HMAC), and encryption protocols such as IPsec or TLS.

Transform functions are typically considered expensive
and hardware acceleration of such functions 1s common.
Some CPUs include support for some simple transforms 1n
the form of vector instructions. Some transforms, such as
encryption and decryption, modify the contents of the packet
payload per a well-defined algorithm. If the transform pro-
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duces output bytes or sub-blocks of data sequentially, then

it 15 a streaming transform. A possible optimization is to

perform transform processing in-line with deserialization as

a form of cut-through. To achieve this a direct path between

deserialization, or another producer, and the transiform

engine 1s needed so that data 1s transformed as 1t 1s received.
A general flow for transform processing may be:

last_length = O

while (panda_object_check_length (last_length + block_size)) {
/* data_block 1s data from oflset last_length for block size */
perform_transform (&start[last_length], block_ size)
last_length += block_size

h

/* Residual from offset last_length for object—>length-last length */
perform_transformation(&start[last_length], object—>length-last length)

In this pseudo code, panda_object_check_length 1s called
in a loop and returns “True” as blocks of data become
available. block size would be the preferred size of a data
block that the transform handles. The loop progresses as
bytes are received, and the transform operates on blocks of
data. When the end of the packet 1s reached, panda_object_
check_length returns “False’ and the loop terminates. There
may be residual data that 1s less than block size so that data
1s processed after the loop. Streaming transforms can be
chained together using cut-through techniques described
above. As bytes are output from one transform they can be
input to another. If the accelerator implements the cut-
through algorithm by implementing the equivalent of pan-
da_object_check length then chaining may be done across
several layers without the need for software intervention.
FIG. 22 demonstrates this; 1n this diagram a packet has both
IPsec and DTLS encryption and validates a UDP checksum.

The standard one’s complement Internet checksum 1s
used by a number of Internet protocols such as TCP, UDP,
and GRE. The arithmetic properties of the Internet check-
sum, 1t 1s associative and commutative, make computation
amenable to optimization. A common hardware acceleration
1s checksum ofiload which performs checksum calculation
in NICs on behalf of a host stack either 1n the transmait path
or receive path. The most general method of receive check-
sum oflload 1s checksum-complete. The basic 1dea is that a
networking device provides the calculated checksum value
across a whole packet, and the network stack uses the value
to validate any number of packet checksums 1n a packet
(there may be multiple checksums to verily 1n a packet due
to encapsulation).

Checksum-complete may be used and potentially opti-
mized by hardware 1n vertical parallelism. The procedure
would be:

The zeroth stage (SerDes function) 1n the pipeline can
perform a running checksum calculation as packets are
received, this 1s already a common feature of NICs. The
checksum covers the beginming of the packet (1.e. the first
byte of Ethernet payload) through the end of the packet
(excluding Fthernet framing and FCS). If the checksum
computation 1s coincident with packet deserialization then
the “frame recerved” dependency may be used to indicate
the complete checksum has been calculated.

At each protocol layer in the pipeline, the checksum
starting from the first byte of the protocol layer header
through the end of the packet 1s computed. This 1s math-
ematically equal to the complete packet checksum minus the
checksum over the bytes preceding the protocol layer which
we call the checksum delta of the previous layer. The

checksum for the 1’th protocol layer may be expressed as:

csum,=packet_csum-delta; |
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The checksum delta for a layer 1s the checksum calculated
over the bytes constituting the current protocol layer plus the
delta for the previous layer may be expressed as:

delta,=delta, +checksum_calc_bytes(layer,)

Determining the checksum for a layer has two dependen-
cies. First the base packet checksum must have been com-
puted; as described above, this could be covered by the
frame received dependency if the packet checksum 1s com-
puted by hardware. Secondly, the delta checksum must be
established for the previous layer. This could be synchro-
nized via a “delta checksum”™ dependency.

In some embodiments, an error checking code such as an
Ethernet Cyclic Redundancy Check (CRC) may be provided
as a Frame Check Sequence (FCS) at the trailer of Ethernet
frames that 1s verified 1n hardware. The Ethernet CRC
checking may include recerving frame data, performing
CRC calculation over the received data, recording the cal-
culated CRC, and veritying that the calculated CRC value
matches the one indicated 1n the frame (on a mismatch, the
frame 1s considered to be 1n error).

To adapt this to vertical parallelism, the zeroth stage
(SerDes) performs a running CRC calculation. The zeroth
stage can be a dependency blocker for the *“accepted”
dependency. If the CRC 1s correct and the frame 1s otherwise
acceptable, the “accepted” dependency 1s resolved. If the
CRC 1s not correct, then approprate action 1s taken such as
killing the pipeline. If processing of a frame commences
before the frame has been received and hence before the
Ethernet CRC has been verified, then later protocol layers
cannot commit to accepting the packet before the depen-
dency 1s resolved. If the CRC verification fails, the packet 1s
dropped by the Fthernet layer and any work by later stages
of the pipeline 1s discarded by imnvoking panda_thread_kall
threads.

As previously discussed, in one or more non-limiting
embodiments, system 100 may achieve a higher level of
computational performance through using one or more hard-
ware accelerators 147 to perform task processing. Process-
ing may also be offloaded to a hardware accelerator 147,
wherein the processing task 1s not only offloaded from the
host CPU, but 1s also performed at a higher rate than a
general-purpose processor. System 100 may include a Ter-
nary Content Addressable Memory or TCAM subsystem
151 or more generally any high performance lookup or
match/action table. TCAMs 151 allow for the masked
matching of entries to a search key or a select field. Masked
matching facilitates search operations common 1n packet
networking. A TCAM 151 may evaluate several matching,
rules 1n parallel so 1t 1s very eflicient.

A common use case of a TCAM 1n network packet
processing 1s to create entries 1n a single level, “flat TCAM™
that matches fields spanming multiple protocol layers. For
instance, TCAM entries may match fields in the TCP header
and IPv6 header for simple TCP/IPv6 packets when there are
no protocol headers between IPv6 and TCP headers. Use of
TCAMs for network packet processing 1n this manner has a
number of drawbacks. First, flat TCAMs work best when the
iput 15 composed of fixed length, well ordered protocol
layers. Variable length headers, like IPv6 extension headers
or TCP options, are dithicult to represent 1n a flat TCAM. In
particular, fields following a variable length header are no
longer 1n a fixed position relative to the start of the packet.
The second major drawback of using a tlat TCAM 1s that the
number of match rules needed becomes combinatorial as the
number of protocol layers increases. If there are N match
rules 1n each protocol layer, M protocol layers, and the
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match rules 1n different protocol layers are independent, then
the maximum total number of match rules 1s given by the
equation:

#match rules=NY

Additionally, as the number of protocol layers increases,
the width of the TCAM also increases which 1s another
challenge introduced by a flat TCAM.

An alternative to using a tlat TCAM 1s to create a TCAM
table for diflerent protocol layers. When a protocol layer 1s
processed, the protocol layer specific TCAM table 1s con-
sulted, which 1s limited to only matching fields or metadata
for the current protocol layer. This eliminates the problem of
variable length headers preceding protocol headers, and 1t
reduces the number maximum total number of match rules
to:

#match rules=N*M

A method to leverage TCAMSs 151 1n vertical parallelism
for networking may be to invoke per protocol layer TCAM
tables for match/action processing. This may be accom-
plished by an API function that 1s called to evaluate the
TCAM rules. The output then provides the action to take (for
instance, the next layer protocol processing to invoke). An
optimization 1s to incorporate a match/action TCAM 151
into the protocol dispatch tunction. The TCAM 151 may be
used to preprocess protocol layer headers. The returned
action 1s to execute a program specific to the matched rules
and protocol layer. Preprocessing may include simple veri-
fications on the packets where 11 verification fails then the
action 1s to drop a packet, or actions might indicate variants
of protocol processing to eschew the need for conditional
branches in a program. If the dispatcher function 1s entirely
in hardware, protocol layer TCAMs may execute without
soltware 1ntervention.

FIG. 23 illustrates an example parse graph that contains
sub-variants of IPv4, IPv6, UDP, and TCP that would be
matched by a TCAM 151 1n a protocol dispatch function.
The per protocol match/action rules 1n FIG. 23 may include:
matching the destination IP address in a packet as being
local or non-local whereby 11 it 1s local, then a program 1s run
to deliver the packet to the local host, else the packet 1s
forwarded when it 1s non-local; matching Hop Limait
whereby the packet 1s subject to forwarding as determined
by matching non-local addresses, the hop limit may also be
matched, and i1 the hop limit 1s found to be one or zero (not
forwardable), then the program to drop the packet i1s run;
matching TCP tlags ({or instance, 1f a SYN 1s received, then
processing for the received SYN 1s done, or processing for
a non-SYN packet 1s done); and matching the UDPv4
checksum to be zero and verily UDPv4 checksum 1f 1t 1s
non-zero.

As suggested i FIG. 21, an implementation of this
architecture might be manifested 1n a NIC or SmartNIC.
This entails the presence of two external interfaces which
are relevant to the architecture: the network interface and the
host interface. The network interface connects to the exter-
nal network for both receive and transmit. On output a
network packet scheduler may be programmed to provide
QoS and other characteristics. Autonomous functions
include tunctions like CRC computation and checksum that
are automatically performed on every packet. Cut-through,
including switching received packets to transmit, may be
done 11 the data to be transmitted 1s produced at a faster rate
than that of actually transmitting the data.

The host iterface connects the system to an external
processing stack typically running on the host CPU (e.g a
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Linux stack or DPDK). This interface provides the data path
to a server from a NIC, storage, or other I/O devices. It could
also be used as the interface for slow path processing for a
switch. Packet and PDU queues are essential for perfor-
mance and load balancing. They provide multi-queue and
virtualization like SRIO-V. Header/data split, where proto-
col headers are received by one processing element (like a
host CPU with a network stack) and payload data for an
Upper Layer Protocol (ULP) 1s directed to another (such as
a GPUs), 1s a significant performance feature (note that these
headers don’t necessarily correspond to the concept of
headers and the parsing bufler). In the transmit path, the host
stack may oflload functions, such as checksum or TCP
Segment Offload (TSO), and may indicate other character-
1stics for transmission such as Quality of Service (QoS) or
time to send packets.

The flow state manager accelerator provides a framework
to maintain states about flows going through the device.
Such functionality 1s common in the use of stateful firewalls,
load balancers, and Network Address Translation (NAT).
The flow state manager implements the infrastructure to
track state. States are i1dentified by a key, usually a protocol
tuple, and state lookup 1s performed with a key as input. The
keys are generic and programmable so that different types of
flow states corresponding to different protocols can be used.
There are three operations that can be invoked for process-
ing on the tlow state manager: lookup, create, destroy. These
respectively lookup and return a flowstate, create a new
flowstate, and destroy an existing tlowstate. The lookup
operation can be extended to optionally create a tlowstate 1f
one does not already exist.

Flowstates may have an associated packet queue or more
generally PDU queue. Queued PDUSs are associated with a
flowstate that has non-work conserving semantics such as IP
reassembly, TCP segmentation reassembly, etc. PDUs are
queued for a flowstate until some necessary condition 1s met,
such as all the packets to complete reassembly of a datagram
have been received or a reassembly timer expires. Memory
1s a finmite resource so statetul mechanisms for flowstates and
packet queues need an eviction policy when memory 1s low.
The flowstate manager must manage its memory and can use
timers, LRU (least recently used), and other known tech-
niques.

Flowstate and queue management 1s expected to be highly
configurable 1 terms of keys, conditions for releasing
queued PDUSs, state eviction timers, etc. Diflerent flowstate
tables may have different configuration properties, for
instance UDP flow states may be considered more expend-
able for eviction than TCP ones and thus have a more
aggressive eviction policy. Denial of Service should be
considered whenever using dynamic stateful mechanisms 1n
a datapath.

The corresponding structures, materials, acts, and equiva-
lents of all means or step plus function elements in the
claims below are intended to include any structure, material,
or act for performing the function in combination with other
claimed elements as specifically claimed. The description of
the present invention has been presented for purposes of
illustration and description but 1s not intended to be exhaus-
tive or limited to the mnvention in the form disclosed. Many
modifications and variations will be apparent to those of
ordinary skill in the art without departing from the scope and
spirit of the imnvention. The embodiments were chosen and
described 1n order to best explain the principles of the
invention and the practical application, and to enable others
of ordinary skill in the art to understand the imnvention for
vartous embodiments with various modifications as are
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suited to the particular use contemplated. The present mnven-
tion according to one or more embodiments described 1n the
present description may be practiced with modification and
alteration within the spirit and scope of the appended claims.
Thus, the description 1s to be regarded as 1llustrative instead
ol restrictive of the present invention.

The mvention claimed 1s:

1. A system comprising one or more computers and one
or more storage devices on which are stored 1nstructions that
are operable, the system comprising one or more memory
and address formats, one or more hardware schedulers,
external memory, CPU set shared memory shared amongst
a cooperative set of CPUs, and CPU local memory, and one
or more accelerators, when executed by the one or more
computers, to cause the one or more computers to perform
operations comprising;:

utilizing a software programming model and API to

program serial data processing including primitives for
parallelism and synchronization for serial processing
pipelines wherein the software programming model
and the API employ lightweight micro threading and
synchronization mechanisms to construct horizontal
pipelines and vertical pipelines with concurrent pro-
cessing wherein the API 1s targeted to a domain specific
space ol serial pipeline processing and the senal data
processing for hardware acceleration;

executing an operation for horizontal parallelization, ver-

tical parallelization, or hybrid parallelization of a serial
processing pipeline to produce data objects, the opera-
tion 1ncluding:
executing the operation as a vertical parallel operation
wherein stages of a same serial processing pipeline
processing a single data object execute concurrently;

executing the operation as a hybrid parallel operation, the
hybrid parallel operation utilizing vertical and horizon-
tal parallelism which work 1n concert wherein within
cach horizontal pipeline, vertical parallelism 1s applied
to processing of the data objects;

analyzing programming language istructions associated

with the senal processing pipeline to determine a type
or types ol parallel operations to be applied, wherein
the data objects are accessed during execution of a
program corresponding to the programming language
istructions associated with the serial processing pipe-
line; and

augmenting compilers to analyze the program being com-

piled to optimize and instantiate a compiled executable
based on the serial processing pipeline defined in
program source code.

2. A system comprising one or more computers and one
or more storage devices on which are stored 1nstructions that
are operable, the system comprising one or more memory
and address formats, one or more hardware schedulers,
external memory, CPU set shared memory shared amongst
a cooperative set of CPUs, and CPU local memory, and one
or more accelerators, when executed by the one or more
computers, to cause the one or more computers to perform
operations comprising;:

utilizing a software programming model and API to

program serial data processing including primitives for
parallelism and synchronization for serial processing
pipelines wherein the software programming model
and the API employ lightweight micro threading and
synchronization mechanisms to construct horizontal
pipelines and vertical pipelines with concurrent pro-
cessing wherein the API 1s targeted to a domain specific
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space ol serial pipeline processing and the serial data
processing for hardware acceleration;

executing an operation for horizontal parallelization, ver-
tical parallelization, or hybrid parallelization of a serial
processing pipeline to produce data objects, the opera-
tion including:

executing the operation as a vertical parallel operation
wherein stages of a same serial processing pipeline
processing a single data object execute concurrently;

executing the operation as a hybrid parallel operation, the
hybrid parallel operation utilizing vertical and horizon-
tal parallelism which work in concert wherein within
cach horizontal pipeline, vertical parallelism 1s applied
to processing of the data objects;

utilizing a threading model comprising processing ele-
ments and procedures of the vertical pipelines and the
horizontal pipelines:

utilizing threads as a unit of execution that implements
one stage 1n a processing pipeline;

utilizing a programming language and model to program
the threads;

utilizing thread sets that are groups of threads that define
instances of the vertical pipelines;

utilizing datapaths, each of which comprises a group of
thread sets, wherein each thread set defines an instance
ol a horizontal pipeline 1n a datapath and processes one
data object at a time; and

utilizing the datapaths and the thread sets to provide the
hybrid parallelization wherein the horizontal paral-
lelization 1s provided by different thread sets of the
datapath, and the vertical parallelism 1s provided by the
threads within a thread set.

3. The system of claim 2, the system causing the one or

more computers to perform further operations comprising:

utilizing dependencies that are processing dependencies
manifested between threads:; and

utilizing dependency synchronization:

the dependency synchronization including;:

providing a resolve point and a wait point wherein the
resolve point 1s a point in a code path of a processing
stage at which processing has been done to satisty a
dependency of a later stage, and the wait point 1s a point
in the code path of a processing stage at which execu-
tion cannot proceed until a dependency 1n an earlier
stage has been resolved; wherein wait and resolve
primitives are implemented 1n the API to synchronize
between wait and resolve points.

4. The system of claim 2 further comprising dependency

synchronization among threads within a thread set, the
system causing the one or more computers to perform
turther operations comprising;:

utilizing intra thread set dependency resolution operations
for dependencies that are of interest within a single
thread set processing pipeline;

maintaining running state for a thread set to track depen-
dencies between dependency watcher, waiter, and
blocker threads; wherein watcher threads are threads
that 1s configured to wait on a dependency, waiter
threads are watcher threads that are actively waiting on
a dependency, and blocker threads are threads that
block a dependency and must resolve the dependency
betfore downstream waiter threads can proceed;
wherein a ordered list of the thread set determines
downstream and upstream relationships between the
watcher, blocker, and waiter threads which are needed
for the dependency resolution operations;
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utilizing a dependency resolution signaling procedure,
wherein when a thread resolves a dependency or has a
dependency resolved for which 1t does not block, the
dependency 1s resolved for a next thread in the ordered
list of the thread set, wherein when the next thread 1s
not a blocker of the dependency then the dependency 1s
resolved for its next thread in the thread list;

adding a thread to the ordered list wherein an 1nitial set of
resolved dependencies for the thread 1s determined as
the set of resolved dependencies for a previous thread
in the thread set and for which the previous thread 1s not
a blocker; and

removing a thread when completed wherein the thread 1s
removed from the ordered list, wherein when a thread
1s terminated, any unresolved dependencies that the
thread blocks are implicitly resolved and the thread 1s
reset to 1ts 1nitial state.

5. The system of claim 2 further comprising dependency

synchronization between thread sets, the system causing the
one or more computers to perform further operations com-
prising:

utilizing 1nter thread set dependency resolution operations
for dependencies that are propagated between the
threads of different thread sets to synchronize process-
ing between horizontal processing pipelines;

utilizing configuration of propagated dependencies, non-
propagated dependencies, early propagated dependen-
cies, and non-blocked early propagated dependencies
for a datapath; wherein the propagated dependencies
indicate dependencies for which their resolution 1s
propagated between thread sets, non-propagated
dependencies indicate dependencies for which their
resolution 1s not propagated between thread sets, early
propagated dependencies indicate dependencies for
which their resolutions are propagated between thread
sets before an origin thread set 1s closed but after at
least one thread has resolved the dependency, and
non-blocked early propagated dependencies indicate
dependencies for which their resolution 1s propagated
between threads sets when the dependency 1s resolved
for a first thread 1n a thread set;

utilizing methods to propagate a dependency resolution
for a propagated dependency between thread sets
wherein when a terminating thread of a thread set that
has been closed resolves a dependency or has a depen-
dency resolved and 1s not a blocker for the dependency,
the dependency 1s then resolved for the first thread 1n a
next thread set 1n an ordered list of the thread sets for
a datapath;

utilizing methods to propagate a dependency resolution
for an early propagated dependency between thread
sets wherein when at least one thread of a thread set
resolves a dependency, the dependency 1s then resolved
for the first thread 1n the next thread set in the ordered
list of thread sets for a datapath; and

utilizing methods to propagate a dependency resolution
for a non-blocked early propagated dependency
between thread sets wherein when a dependency 1s
resolved for the first thread 1n a thread set, the depen-
dency 1s then resolved for the first thread in the next

thread set in the ordered list of thread sets for a

datapath.
6. The system of claim 2, the system causing the one or

more computers to perform further operations comprising:
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utilizing dependency channels that 1s a method to group
together data objects that belong to a same logical tlow
and 1n order processing of objects 1s maintained within
the group;

maintaiming an order list of thread sets for each depen-
dency channel;

maintaiming ordered processing semantics and synchro-
nization among the thread sets of a channel by one or
more channel dependencies wherein the channel
dependencies are declared i1n datapath configuration
and are propagated dependencies; wherein the datapath
1s comprised of multiple sets of dependency channels
where each has its own logically independent instance
of the channel dependencies; and

joming, by a thread set to a dependency channel by an
operation, wherein an argument specifies which chan-

nel to join, wherein when a thread set 1s joined to a

dependency channel 1t 1s 1nserted at a tail of the ordered
list of thread sets for the dependency channel and 1is
joimed for a remaining lifetime of the thread set for

processing a data object; wherein a thread set 1s join-
able to more than one dependency channel when mul-
tiple dependency channel sets are supported by the
datapath.

7. The system of claim 6 further comprising: a thread
scheduler for a thread set that performs top function sched-
uling comprising:

utilizing the top function scheduling wherein an input

thread, a top function thread, for a thread set runs 1n an
event loop for processing a work queue that contains
work 1tems describing objects for the thread set to
process, the top function thread dequeuing a first item
in the work queue when there 1s a work 1tem 1n the work
queue;

in response to the dequeuing, scheduling one or more

worker threads to perform processing of various layers
of the data object indicated in the dequeued work 1tem;
determining a thread 1s not available for scheduling; and
in response to determiming that no threads are available
for scheduling the thread scheduler blocking until a
thread 1s available.

8. A system comprising one or more computers and one
or more storage devices on which are stored instructions that
are operable, the system comprising one or more memory
and address formats, one or more hardware schedulers,
external memory, CPU set shared memory shared amongst
a cooperative set ol CPUs, and CPU local memory, and one
or more accelerators, when executed by the one or more
computers, to cause the one or more computers to perform
operations comprising;:

utilizing a software programming model and API to

program serial data processing including primitives for
parallelism and synchronization for serial processing
pipelines wherein the software programming model
and the API employ lightweight micro threading and
synchronization mechanisms to construct horizontal
pipelines and vertical pipelines with concurrent pro-
cessing wherein the API 1s targeted to a domain specific
space of serial pipeline processing and the serial data
processing for hardware acceleration;

executing an operation for horizontal parallelization, ver-

tical parallelization, or hybrid parallelization of a serial
processing pipeline to produce data objects, the opera-
tion including:

executing the operation as a vertical parallel operation

wherein stages of a same serial processing pipeline
processing a single data object execute concurrently;
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executing the operation as a hybrid parallel operation, the
hybrid parallel operation utilizing vertical and horizon-
tal parallelism which work 1n concert wherein within
cach horizontal pipeline, vertical parallelism 1s applied
to processing of the data objects, the system having
procedures for thread scheduling that schedules run-
ning of threads i a pipeline, wherein each thread
includes a work queue, wherein a work item 1s config-
ured to be placed on the work queue that indicates a
function to be performed by a thread and a reference to
a data object and a reference to the data of a specific
layer to be processed; an available thread dequeuing a
first item 1n the work queue when there 1s a work 1tem
in the work queue, and 1n response to the dequeuing,
performing requested processing by calling an appro-
priate function;

waiting on upstream threads to complete wherein a thread

invokes a primitive to wait for all of the upstream
threads 1n the pipeline to complete and will block until
all the upstream threads are complete; and

killing all downstream threads in a pipeline wherein a

thread mvokes a primitive to force all threads of the
downstream in the pipeline to terminate and reset to
their mitial state and become available.

9. The system of claim 8 further comprising: cascade
scheduling, the system causing the one or more computers
to perform further operations comprising;

processing, by a last thread 1n an ordered list of a thread

set, the data object to determine a next layer that 1s to
be processed and starting a next worker thread in the
thread set to process the next layer.

10. A system comprising one or more computers and one
or more storage devices on which are stored 1nstructions that
are operable, the system comprising one or more memory
and address formats, one or more hardware schedulers,
external memory, CPU set shared memory shared amongst
a cooperative set of CPUs, and CPU local memory, and one
or more accelerators, when executed by the one or more
computers, to cause the one or more computers to perform
operations comprising:

utilizing a software programming model and API to

program serial data processing including primitives for
parallelism and synchronization for serial processing
pipelines wherein the software programming model
and the API employ lightweight micro threading and
synchronization mechanisms to construct horizontal
pipelines and vertical pipelines with concurrent pro-
cessing wherein the API 1s targeted to a domain specific
space of serial pipeline processing and the serial data
processing for hardware acceleration;

executing an operation for horizontal parallelization, ver-

tical parallelization, or hybrid parallelization of a serial
processing pipeline to produce data objects, the opera-
tion including:
executing the operation as a vertical parallel operation
wherein stages of a same serial processing pipeline
processing a single data object execute concurrently;

executing the operation as a hybrid parallel operation, the
hybrid parallel operation utilizing vertical and horizon-
tal parallelism which work 1n concert wherein within
cach horizontal pipeline, vertical parallelism 1s applied
to processing of the data objects, the system having
procedures for thread set scheduling that schedules
thread sets 1n a datapath to process the data objects, the
system causing the one or more computers to perform
further operations comprising:
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utilizing one or more mnput scheduler functions that serve
as the schedulers of the thread sets of the datapath,
wherein an mput scheduler function maintains a queue
of the data objects to process; and

inputting a data object into the datapath, wherein an input

scheduler function of the one or more mput scheduler
functions attempts to select a thread set among a set of
avallable thread sets, wherein when the thread set is
available 1t 1s reserved as busy and 1t 1s 1nserted at a tail
of a ordered list of the busy thread sets for the datapath
and a top function for the thread set is run; wherein
when no thread sets are available, the mput scheduler
queues a work item for the data object 1n a datapath
data object work queue; wherein when a thread set
completes 1ts processing and becomes available and
there 1s an 1tem on the work queue, the input scheduler
dequeuing a work 1tem from the datapath’s work queue
and proceeding to start the available thread set to
process the object described 1n the work item.

11. A system comprising one or more computers and one
or more storage devices on which are stored 1nstructions that
are operable, the system comprising one or more memory
and address formats, one or more hardware schedulers,
external memory, CPU set shared memory shared amongst
a cooperative set of CPUs, and CPU local memory, and one
or more accelerators, when executed by the one or more
computers, to cause the one or more computers to perform
operations comprising:

utilizing a software programming model and API to

program serial data processing including primitives for
parallelism and synchronization for serial processing
pipelines wherein the software programming model
and the API employ lightweight micro threading and
synchronization mechanisms to construct horizontal
pipelines and vertical pipelines with concurrent pro-
cessing wherein the API 1s targeted to a domain specific
space of serial pipeline processing and the serial data
processing for hardware acceleration;

executing an operation for horizontal parallelization, ver-

tical parallelization, or hybrid parallelization of a serial
processing pipeline to produce data objects, the opera-
tion including;:
executing the operation as a vertical parallel operation
wherein stages of a same serial processing pipeline
processing a single data object execute concurrently;

executing the operation as a hybrid parallel operation, the
hybrid parallel operation utilizing vertical and horizon-
tal parallelism which work 1n concert wherein within
cach horizontal pipeline, vertical parallelism 1s applied
to processing of the data objects;
utilizing block level parallelism as a specialized form of
the vertical parallelism for fine grained parallelization
of independent blocks of code within a code path;

implementing a fork operation to create one or more
ephemeral threads such that one parallel code block
runs 1 an original thread, and other parallel code
blocks run in the one or more ephemeral threads; and

implementing a join operation wherein the one or more
ephemeral threads execute their code blocks and then
exit, and the original thread executes its code block and
then performs the join operation to wait for the one or
more ephemeral threads to exit.

12. A system comprising one or more computers and one
or more storage devices on which are stored 1nstructions that
are operable, the system comprising one or more memory
and address formats, one or more hardware schedulers,
external memory, CPU set shared memory shared amongst
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a cooperative set of CPUs, and CPU local memory, and one
or more accelerators, when executed by the one or more
computers, to cause the one or more computers to perform
operations comprising:

utilizing a software programming model and API to

program serial data processing including primitives for
parallelism and synchronization for serial processing
pipelines wherein the software programming model
and the API employ lightweight micro threading and
synchronization mechanisms to construct horizontal
pipelines and vertical pipelines with concurrent pro-
cessing wherein the API 1s targeted to a domain specific
space ol serial pipeline processing and the senal data
processing for hardware acceleration;

executing an operation for horizontal parallelization, ver-

tical parallelization, or hybrid parallelization of a serial
processing pipeline to produce data objects, the opera-
tion 1ncluding:
executing the operation as a vertical parallel operation
wherein stages of a same serial processing pipeline
processing a single data object execute concurrently;

executing the operation as a hybrid parallel operation, the
hybrid parallel operation utilizing vertical and horizon-
tal parallelism which work 1n concert wherein within
cach horizontal pipeline, vertical parallelism 1s applied
to processing of the data objects;

utilizing chamned transform hardware accelerators

wherein a chain of accelerators 1s dynamically pro-
grammed to operate 1n sequence on a data object,
wherein the data object and output from transforms are
comprised of blocks of data that are operated on such
that the blocks of data from the output of one transform
accelerator 1s an input data block of a next transform
accelerator 1n the chain; wherein different blocks of the
same data object are processed in parallel by the
different transform accelerators 1n the sequence;

wherein the transform accelerators are configured to
concurrently process data blocks from different data
objects as long as properly in order processing of the
data i each data object 1s maintained; and

transform processing in-line with streaming datapath

input functions, or a deserialization function in net-
working, with one or more transforms being processed
in a loop that 1s employed to perform incremental
transiorm processing on blocks of bytes of a data object
as they become available, wherein 1n each iteration of
the loop, a function 1s called to check when a block of
data of some size 1s available, the function returns true
when a block 1s available and returns false when an end
of the data object 1s reached, the function will block
when a data block 1s not available and an end of the data

object 1s not yet reached a loop proceeds and processes

blocks of data as they become available, where for each

block one or more transforms operate i1t; wherein when
the end of the data object 1s reached, as indicated by the
check function returning false, the loop terminates and
any residual bytes of the data object are operated on by
the transforms.

13. A system comprising one or more computers and one
or more storage devices on which are stored 1nstructions that
are operable, the system comprising one or more memory
and address formats, one or more hardware schedulers,
external memory, CPU set shared memory shared amongst
a cooperative set ol CPUs, and CPU local memory, and one
or more accelerators, when executed by the one or more
computers, to cause the one or more computers to perform
operations comprising;:
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utilizing a software programming model and API to
program serial data processing including primitives for
parallelism and synchronization for serial processing
pipelines wherein the software programming model
and the API employ lightweight micro threading and
synchronization mechanisms to construct horizontal
pipelines and vertical pipelines with concurrent pro-
cessing wherein the API 1s targeted to a domain specific
space of serial pipeline processing and the serial data
processing for hardware acceleration;

executing an operation for horizontal parallelization, ver-

tical parallelization, or hybrid parallelization of a serial
processing pipeline to produce data objects, the opera-
tion including;:
executing the operation as a vertical parallel operation
wherein stages of a same serial processing pipeline
processing a single data object execute concurrently;

executing the operation as a hybrid parallel operation, the
hybrid parallel operation utilizing vertical and horizon-
tal parallelism which work 1n concert wherein within
cach horizontal pipeline, vertical parallelism 1s applied
to processing of the data objects, the system having a
programmable parser having protocol nodes, parse
nodes, and protocol tables; the protocol node providing
properties and functions needed to parse one protocol
in a parse graph to proceed to a next protocol in the
parse graph, the protocol node having functions that are
implemented per a specific protocol to return a length
ol a protocol layer or header of a current protocol layer
and return a protocol type of the next layer, the protocol
table returning the next parse node in the protocol
graph based on input of the protocol type of the next
layer, wherein the parse node 1s an 1nstantiation of one
node in the parse graph of a parser, the parse node
allowing functions to extract metadata from a protocol
header and save 1t 1n a metadata memory, and to
perform protocol processing.

14. A system comprising one or more computers and one
or more storage devices on which are stored 1nstructions that
are operable, the system comprising one or more memory
and address formats, one or more hardware schedulers,
external memory, CPU set shared memory shared amongst
a cooperative set of CPUs, and CPU local memory, and one
or more accelerators, when executed by the one or more
computers, to cause the one or more computers to perform
operations comprising;:

utilizing a software programming model and API to

program serial data processing including primitives for
parallelism and synchronization for serial processing
pipelines wherein the software programming model
and the API employ lightweight micro threading and
synchronization mechanisms to construct horizontal
pipelines and vertical pipelines with concurrent pro-
cessing wherein the API 1s targeted to a domain specific
space ol serial pipeline processing and the senial data
processing for hardware acceleration;

executing an operation for horizontal parallelization, ver-

tical parallelization, or hybrid parallelization of a serial
processing pipeline to produce data objects, the opera-
tion including:

executing the operation as a vertical parallel operation

wherein stages of a same serial processing pipeline
processing a single data object execute concurrently;
executing the operation as a hybrid parallel operation, the
hybrid parallel operation utilizing vertical and horizon-
tal parallelism which work 1n concert wherein within
cach horizontal pipeline, vertical parallelism 1s applied
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to processing of the data objects, the system having a
parser engine that drives parsing, and a parser compiler
for creating a dependency graph and populating wait
points and resolve points; and

accelerating by implementing a programmable parser 1n

hardware, the programmable parser 1dentifying a pro-
tocol layer 1n a packet, and in response to an 1dentifi-
cation, parsing the protocol layer and scheduling
threads to perform per layer processing.

15. A system comprising one or more computers and one
or more storage devices on which are stored 1nstructions that
are operable, the system comprising one or more memory
and address formats, one or more hardware schedulers,
external memory, CPU set shared memory shared amongst
a cooperative set of CPUs, and CPU local memory, and one
or more accelerators, when executed by the one or more
computers, to cause the one or more computers to perform
operations comprising;:

utilizing a software programming model and API to

program serial data processing including primitives for
parallelism and synchronization for serial processing
pipelines wherein the software programming model
and the API employ lightweight micro threading and
synchronization mechanisms to construct horizontal
pipelines and vertical pipelines with concurrent pro-
cessing wherein the API 1s targeted to a domain specific
space ol serial pipeline processing and the senal data
processing for hardware acceleration;

executing an operation for horizontal parallelization, ver-

tical parallelization, or hybrid parallelization of a serial
processing pipeline to produce data objects, the opera-
tion 1ncluding:
executing the operation as a vertical parallel operation
wherein stages of a same serial processing pipeline
processing a single data object execute concurrently;

executing the operation as a hybrid parallel operation, the
hybrid parallel operation utilizing vertical and horizon-
tal parallelism which work 1n concert wherein within
cach horizontal pipeline, vertical parallelism 1s applied
to processing of the data objects, the system having a
computation of an Internet checksum, or one’s comple-
ment checksum with respect to a serial processing
pipeline;

utilizing a method to provide to a thread the one’s

complement checksum of all words of the data corre-
sponding to a protocol layer;

utilizing a method to provide to a thread the one’s

complement checksum of all words of data correspond-
ing to all words preceding a protocol layer; and
utilizing a method 1n a thread processing of a protocol
layer to set or validate a protocol checksum, without
additional checksum computation, using one’s comple-
ment sum of all words 1n the data object, the one’s
complement sum of all words of the data corresponding,
to a protocol layer, and the one’s complement sum of
all words corresponding to all words preceding a layer.

16. A system comprising one or more computers and one
or more storage devices on which are stored instructions that
are operable, the system comprising one or more memory
and address formats, one or more hardware schedulers,
external memory, CPU set shared memory shared amongst
a cooperative set ol CPUs, and CPU local memory, and one
or more accelerators, when executed by the one or more
computers, to cause the one or more computers to perform
operations comprising;:

utilizing a software programming model and Application

Programming Interface to program serial data process-
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ing including primitives for parallelism and synchro-
nization for serial processing pipelines;

utilizing serial thread schedulers to manifest horizontal
parallelism wherein a sequential thread ordering
amongst threads 1s established such that for any two
threads, one thread of the any two threads 1s down-
stream ol a second thread of the any two threads;

utilizing sernial thread set schedulers to manifest vertical
parallelism wherein a set of threads are scheduled for a
task of processing a data object or work item and thread
set schedulers maintain sequential thread set ordering
such that for any two thread sets, one thread set of the
any two thread sets 1s downstream of a second thread
set of the any two thread sets;

utilizing the serial thread schedulers and the serial thread
set schedulers to manifest a hybrid of horizontal and
vertical parallelism;

utilizing thread dependencies that are unidirectional pro-
cessing dependencies between the threads wherein
downstream threads are configured to have processing
dependencies on upstream threads, but upstream stream
threads are configured to not have processing depen-
dencies on the downstream threads;

utilizing thread set dependencies that are the unidirec-
tional processing dependencies between thread sets
wherein downstream thread sets are configured to have
processing dependencies on upstream thread sets, but
upstream stream thread sets are configured to not have
processing dependencies on the downstream thread
sets;

utilizing the dependencies to synchronize processing
amongst serial threads, and utilizing dependency syn-
chronization primitives and the Application Program-
ming Interface for the dependencies to synchronize the
processing of critical regions amongst the serial
threads;

utilizing the dependencies to synchronize the processing
amongst serial thread sets, and utilizing the dependency
synchronization primitives and the Application Pro-
gramming Interface for the dependencies to synchro-
nize the processing of the critical regions amongst the
serial thread sets; and

utilizing data flow and program analysis to determine
optimal use optimal use of the dependency synchroni-
zation primitives.
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17. A system comprising one or more computers and one
or more storage devices on which are stored 1nstructions that
are operable, the system comprising one or more memory
and address formats, one or more hardware schedulers,
external memory, CPU set shared memory shared amongst
a cooperative set of CPUs, and CPU local memory, and one
or more accelerators, when executed by the one or more
computers, to cause the one or more computers to perform
operations comprising:

utilizing a software programming model and API to

program serial data processing including primitives for
parallelism and synchronization for serial processing
pipelines wherein the software programming model
and the API employ lightweight micro threading and
synchronization mechanisms to construct horizontal
pipelines and vertical pipelines with concurrent pro-
cessing wherein the API 1s targeted to a domain specific
space of serial pipeline processing and the serial data
processing for hardware acceleration;

executing an operation for horizontal parallelization, ver-

tical parallelization, or hybrid parallelization of a serial
processing pipeline to produce data objects, the opera-
tion including:
executing the operation as a vertical parallel operation
wherein stages of a same serial processing pipeline
processing a single data object execute concurrently;

executing the operation as a hybrid parallel operation, the
hybrid parallel operation utilizing vertical and horizon-
tal parallelism which work 1n concert wherein within
cach horizontal pipeline, vertical parallelism 1s applied
to processing of the data objects; and

utilizing dependencies that are processing dependencies

manifested between threads; and

utilizing dependency synchronization, the dependency

synchronization including:

providing a resolve point and a wait point wherein the

resolve point 1s a point in a code path of a processing
stage at which the processing has been done to satisty
a dependency of a later stage, and the wait point 1s a
point 1n the code path of the processing stage at which
execution cannot proceed until the dependency 1n an
carlier stage has been resolved; wherein wait and
resolve primitives are implemented 1n the API to syn-
chronize between wait and resolve points.
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