
Parallelism in Network Processing
Tom Herbert

SiPanda

ABSTRACT
Network processing is inherently a form of serialized data
processing where packets, as well as protocol layers in
packets, must be processed in sequential order without
overlap. The ever increasing demands for low latency and
high throughput motivate the pursuit of higher performance
in network processing. While parallelism is a well known
technique in computing for high performance, parallelizing
network processing with granularity has been challenging.
In this paper, we present a novel solution that reaps the
maximum benefits of parallelism in network processing.
We first provide a theoretical foundation that defines
horizontal and vertical parallelism as the fundamental types
of parallelism in network processing. We then describe a
threading and synchronization model designed around the
characteristics of parallelizing serial data processing. Given
this foundation, we describe the Serial Data Processing
Unit, a domain specific architecture for fine grained and
easily programmable parallelism in network processing.
Lastly, we describe the Single Flow Bottleneck and how
the techniques outlined in this paper can address it. The
benefits of our solution are higher throughput, lower
latency, and better resource utilization.

CCS CONCEPTS
• Computer systems organization→Architectures;Parallel
architectures;Multicore architectures
• Networks→Network algorithms;Data path algorithms

KEYWORDS
Parallelism, Synchronization, Parsing, Data path, Serial data,
Parallel programming. Programmable Dataplane

1. INTRODUCTION
In this paper we introduce a foundation and architecture for
parallelism in network processing1. Network processing is
inherently a form of serial data processing, hence our goal
is to “find” parallelism in serial data processing [55].
Heretofore, this has proven to be a challenging endeavor.

State of the art of parallelism in network processing is
multi-queue. While multi-queue has served us well over the
years, its limitations and edge conditions are a mismatch
for the demands for higher performance. This is especially
true as we’re reaching the end of Moore’s Law [34,48] and
we can no longer rely on increases in CPU speed to keep
pace with increases in network bandwidth. More
parallelism is one answer to the end of Moore’s Law [33].

Our architecture exploits key attributes of serial data
processing to elicit fine grained parallelism in network
processing. This is based on the observation that per the
semantics of serial data processing, the externally visible
output of network processing must correspond to both
packets and their protocol layers having been processed in
order. We implement an internal parallelism in network
processing that properly maintains the effects of serial data
processing. In concert with other techniques, including
hardware accelerators, memory optimizations, and ISA
extensions; parallelism can greatly improve performance in
latency, throughput, and resource utilization.

This is a “Systems Paper” focused on scaling networking
performance of data center servers for processing very high
packet rates (up to one billion packets per second). In our
performance analysis, we assume that server CPU
processing is the primary bottleneck for processing high
packet rates, and that the network and other system
resources can be sufficiently provisioned to avoid being
bottlenecks.

This paper is organized as follows. First we describe multi-
queue and its problems. Then, we provide the theoretical
foundation for parallelism in network processing, and we
describe our threading and synchronization model. We then
present the Serial Data Processing Unit, a domain specific
architecture [22] for network processing. Next, we describe
the Single Flow Bottleneck and demonstrate how the
techniques of this paper can be applied to address it. We
conclude with discussion and opportunities.

1 Original inventions in this paper are covered by US patent

1

2. MULTI-QUEUE
Multi-queue parallelism, or multi-queue [12], is commonly
supported in host networking implementations. Multi-
queue steers received packets to different queues, and each
queue is processed by a CPU thread where the threads can
run in parallel2. The in-order processing requirements are
relaxed so that only packets for the same flow must be
processed in order. Packets are steered to queues based on a
classification algorithm, such as a hash over the transport
layer 4-tuple, that associates packets with their flows. This
creates affinity between flows and threads to ensure that
packets in a flow are processed in order, but it also
promotes cache locality of flow related data structures.
Figure 1 illustrates multi-queue.
Multi-queue is an opportunistic optimization. Under ideal
conditions, there is a mix of packets in many different
flows such that the load across receive queues has a
uniform distribution (Figure 2(a)); we call this idealized
parallelism and an arbitrarily high throughput can be
achieved given enough queues and threads. Under less than
perfect conditions, multi-queue has two fundamental
problems: 1) workload imbalances, and 2) the Single Flow
Bottleneck. The performance effects of these problems are
shown in Figure 3.

2.1 Multi-queue workload imbalances
Multi-queue is susceptible to workload imbalances. The
workload across receive queues can be nonuniform when
there is a relatively small number of active flows3. This is
due to variance of distribution for the hash function which
is only asymptotic to a uniform distribution.
A proposed mitigation to the workload imbalance problem
is to steer packets for flows to queues by round robin; for
example, packets of the first flow are steered to the first
queue, packets of the second flow are steered to the second
queue, and so on. This produces a uniform distribution for
good performance, however steering packets by round
robin requires state that maps flows to queues, so it is less
practical to implement than hash steering which is stateless. 2.2 Multi-queue Single Flow Bottleneck

If the number of active flows is less than the number of
queues, then an imbalanced workload is inevitable with
multi-queue even with round robin steering. For instance, if
there are eight queues and only four flows, all packets for
those four flows are processed by at most four CPUs which
limits throughput. In the worst case, there is only one active
flow so that all packets are processed by one CPU with no
parallelism (Figure 2(b)). We call this problem the Single
Flow Bottleneck. Section 7 describes the problem in detail
and presents a solution based on the techniques and
architecture described in this paper.

2 There are software and hardware variants of multi-queue [25]. Receive Side Scaling (RSS) [59] is a hardware technique commonly
implemented in NICs (Network Interface Cards) that steers packets to different hardware queues based on a hash of the flow tuple in
packets. Receive Packet Steering (RPS) emulates RSS in software. Receive Flow Steering (RFS) is an extension of RPS that steers
packets to CPUs where the associated flow is being processed. Accelerated RFS (aRFS) implements a form of RFS in NIC hardware.

3 This problem has been exploited in a Denial of Service attack where an attacker saturates a queue with packets in an attempt to degrade
service for other flows mapped to the same receive queue [13].

2

Figure 3: Multi-queue performance. In this example, eight
receive queues are used, and 125,000 packets per second can be
processed by each queue for a maximum throughput of one
million packets per second. The light blue line shows the
performance of multi-queue when steering by hash, and the dark
red line shows performance of multi-queue when steering with
round robin. The dashed line indicates maximum throughput of
one million packets per second which is attainable with horizontal
parallelism (Section 3.1). The performance gaps from workload
imbalances and the Single Flow Bottleneck are highlighted.

Figure 1: Multi-queue parallelism. Packets are received on a
network interface and are “steered to queues” based on their flow.

Figure 2: Best and worst case scenarios of multi-queue
performance. (a) illustrates idealized parallelism in which all
received packets are independent and can be processed in parallel.
(b) shows the worst case scenario in which all packets are for a
single flow and are processed by one thread with no parallelism.
Each block represents a packet, and the dotted line indicates line
rate throughput. Tput gives the throughput for the scenarios.

3. FOUNDATIONS OF PARALLELISM
In this section, we provide the theoretical foundation for
parallelism in network processing, and describe the two
fundamental types of parallelism in network processing:
horizontal parallelism and vertical parallelism4. Figure 4
illustrates these.

3.1 Horizontal parallelism
In horizontal parallelism, packets are processed in parallel
in different threads5. Packets are steered similarly as in
multi-queue but without flow to CPU affinity which avoids
workload imbalances. Synchronization (Section 4) is used
to preserve correct ordering. An example of horizontal
parallelism is a network switch that processes packets in
parallel but forwards them in order.
The minimal number of parallel threads required to handle
packet processing at maximum input rate in horizontal
parallelism is given by Equation 16.

Equation 1: Minimal number of threads to sustain a given
input rate in horizontal parallelism. tinput is the minimum time
between consecutive packets, where the inverse of tinput is the
input rate. tpacket is the maximum time to process a packet.

The number and types of protocol layers in packets can
vary, so the total time to process a packet in horizontal
parallelism is the sum of times to process each protocol
layer of the packet. This is given by Equation 2.

Equation 2: Maximum time to process a packet in horizontal
parallelism. t(i)layer is the maximum time to process the i’th
protocol layer in a packet.

The time to process one protocol layer of a packet in a CPU
is a function of the number of instructions, Instructions Per
Cycle (IPC), and CPU clock frequency7 [21]. This function
is given in Equation 3.

Multi-queue is essentially a constrained form of horizontal
parallelism. The primary difference between the two is that
horizontal parallelism steers packets without regard to their
flow; this allows packets to be “randomly sprayed” across
threads which guarantees a uniform distribution and high
throughput regardless of the number of flows (Figure 3).
Horizontal parallelism doesn’t establish flow to CPU
affinity, so it doesn't promote cache locality of flow related
data structures as multi-queue does. Section 7 discusses
mitigations for the loss of cache locality.

3.2 Vertical parallelism
In vertical parallelism, protocol layers of a single packet
are processed in parallel in different threads8. Per the
requirements of serial data processing, the protocol layers
must be processed in order. Synchronization, described in
Section 4, is used to preserve correct ordering. An example
of vertical parallelism is a server that processes TCP/IPv6
packets where each of the Ethernet, IPv6, and TCP headers
are processed in parallel in different threads. The primary
benefit of vertical parallelism is reduced per packet latency.
In vertical parallelism, the total time to process a packet
equals the maximum time to process any of the constituent
protocol layers. This is given by Equation 4.

Equation 4: Maximum time to process a packet in vertical
parallelism. t(i)layer is the maximum time to process the i’th
protocol layer in a packet.

4 The term “horizontal” is inspired by envisioning serial data as a continuous bit stream, like the memory tape of a Turing machine [58];
the term “vertical” is inspired by the typical vertical visualization of protocol stacks, like how the OSI model is visualized [38].

5 Architecturally, horizontal parallelism is a form of MIMD (Multiple Instructions, Multiple Data) parallelism [16].
6 In Equation 1, if tpacket is less than tinput then one thread is sufficient to handle the workload which is desirable in some use cases.
7 A clock cycle, or just cycle, is a discrete time event in a CPU that drives instruction execution. The CPU clock frequency is the number of

cycles per second. The number of instructions executed per clock cycle, or IPC, is dependent on the CPU architecture and workload [21].
We measured the IPC on x86 for network processing to be in the range of 1.4 to 1.8. For our purposes, we assume an average IPC of 1.4.

8 Architecturally, vertical parallelism is a form of MISD (Multiple Instructions, Single Data) parallelism [16], where the “Single Data” is
one packet. It may be arguable if vertical parallelism corresponds to a strict definition of MISD as a processor architecture, however from
a system level view MISD seems to be the best classification and differentiates from horizontal parallelism which is clearly MIMD.

3

Equation 3: Time to process one protocol layer of a packet
in a CPU. NumInslayer is the number of instructions executed
for processing the protocol layer , IPC is the Instruction Per
Cycle, and ClockFreq is the CPU clock frequency.

tlayer=(
NumInslayer

IPC
)×(1

ClockFreq
)

t packet= ∑
i=all layers

t(i)layer

Figure 4: Horizontal and Vertical parallelism. The diagram
illustrates an example for processing eight packets in both
horizontal and vertical parallelism. Each packet is composed of
some number of protocol layers (represented by the colored
blocks). In this example, packets are input at constant intervals as
indicated by the dotted vertical lines. In horizontal parallelism the
packets are processed in parallel in four threads, and in vertical
parallelism the individual protocol layers of each packet are
processed in parallel using five threads. Each marked row in the
diagram represents a thread.

t packet= max
i=alllayers

(t (i)layer)

numthreads=ceiling (
t packet

t input
)

3.3 Constrained Vertical Parallelism
If the number of protocol layers in a packet is greater than
the number of threads available for vertical parallelism then
that is constrained vertical parallelism. In constrained
vertical parallelism, if no threads are available then the
processing for a protocol layer must wait until one is
available. A thread becomes available when processing for
another protocol layer completes. In this architecture,
packet processing is work conserving [29], so that there is
always at least one thread running and guaranteed to
complete. Figure 5 demonstrates an example processing
flow with constrained vertical parallelism.
For constrained vertical parallelism, the time to process a
packet is given by Equation 5.

Equation 5: Maximum time to process a packet in constrained
vertical parallelism. t(i)layer is the maximum time to process the
i’th protocol layer, numthreads indicates the number of threads
available for vertical parallelism, and numlayers indicates the
number of protocol layers in a packet. Note that if numthreads >=
numlayers then the equation is equivalent to Equation 4 for
vertical parallelism, and if numthreads is one then the equation
degenerates to Equation 2 with no vertical parallelism.

3.4 Hybrid parallelism
To achieve high throughput and low latency, a combination
of vertical parallelism and horizontal parallelism may be
employed in hybrid parallelism. Figure 5 demonstrates an
example processing flow using hybrid parallelism.
Per Equation 1, hybrid parallelism becomes effective when
the packet processing time is greater than inter packet
arrival time and is especially beneficial for high throughput
cases, such as a high speed network switch, where per
packet processing time is much greater, possibly by one or
two orders of magnitude, than inter packet arrival time
Vertical parallelism bounds the latency to process a single
packet which minimizes packet processing time and the
number of horizontal threads needed.

4. THREADING
This section describes the threading and scheduling model
for horizontal and vertical parallelism. The elements of this
model are threads, thread sets, and datapaths; these are
illustrated in Figure 6.

4.1 Threads
A thread is the smallest set of programmed instructions that
can be independently scheduled to execute in a CPU [44].
Threads are supported by the underlying operating system
to provide thread level parallelism9 [45]. Threads are run to
completion [52] and should have minimal context switch
overhead [53] to support vertical parallelism.
A number of OS level threads are created to perform
network processing. Each thread runs an event loop that
polls a work queue for new work to be performed. A queue
contains work items, each of which describes a unit of work
being requested. A work item includes all the necessary
information for processing a layer including a reference to
the packet being processed, the specific function that the
thread should perform, and other contextual information
needed for processing. When work becomes available to a
thread, meaning there is an item in the work queue, it
dequeues the first item in the queue and performs the
requested processing by calling the indicated function.
When the processing function returns, the thread is done
and the event loop is re-initialized to process the next work
item. A thread will block while waiting on a dependency to
be resolved (Section 5) or waiting for an accelerator to
complete. While a thread is blocked, another thread can be
scheduled to run on the CPU.

4.2 Thread sets
Threads are grouped together into thread sets. A thread set
defines one instance of packet processing, and thread sets
can process packets in parallel in horizontal parallelism. A
thread set contains a number of worker threads that process
protocol layers of packets in vertical parallelism. At any
given time, a worker thread is either available (not
running), or busy (running and processing a protocol layer).
The set of running threads in a thread set are well ordered
and maintained by the thread set in an ordered list. The
ordered list determines the downstream and upstream
relationships of threads needed for dependency resolution
(Section 5). When a thread set is started, it is added to the
tail of the ordered list; and when a thread terminates
(becomes “done”), it is removed from the ordered list.
Threads may kill downstream threads if a condition renders
work of the downstream threads irrelevant. For instance, if
IPv4 header checksum validation fails when processing an
IP header then the packet will be dropped and processing of
the TCP header is no longer relevant, so the IP layer
processing thread can kill the TCP processing thread along
with any downstream threads of the TCP processing thread.

9 POSIX Threads (pthreads) [32] provides this functionality. To reduce overhead, we are investigating the use of fibers [36]. In the SDPU,
hardware threads are used and are managed by a hardware CPU scheduler for very low overhead.

4

Figure 5: Hybrid and constrained vertical parallelism. The
diagram illustrates an example for processing the same eight
packets in Figure 4 in hybrid parallelism with constrained vertical
parallelism. Two packets can be processed in horizontal
parallelism, and two protocol layers of each packet can be
processed in parallel in vertical parallelism. If a packet has more
than two protocol layers then processing has to wait for an
available thread. For instance, in packet #2, processing for the red
protocol layer waits until the orange layer processing completes.

t packet=ceiling (numlayers
numthreads

)×max
all layers

(t(i)layer)

4.3 Datapaths
A datapath is an instance of a network processing data
path, and consists of a number of thread sets. Thread sets of
a datapath can process packets in parallel in horizontal
parallelism. Thread sets are well ordered and maintained in
an ordered list. The ordered list determines the downstream
and upstream relationships of thread sets needed for inter
thread set dependency resolution (Section 5.4). When a
thread set is started it is added to the tail of the ordered list;
and when all the threads in a thread set are done then the
thread set is done and it is removed from the ordered list.
4.4 Worker thread scheduling
Worker threads are scheduled by top function scheduling or
cascade scheduling. These can be combined in hybrid
scheduling. Figure 7 illustrates these methods.

4.4.1 Top function scheduling
In top function scheduling, each thread set runs a top
function to schedule worker threads. Typically, the top
function invokes a parser [17] to identify the constituent
protocol layers of packets and then schedules threads to
process the layers. For each identified protocol layer, the
top function may schedule a worker thread by queuing a
work item on the work queue of an available worker thread.
Parsing may be tightly integrated with scheduling as
parser-scheduling, and the top function is then a parser-
scheduler.

4.4.2 Cascade scheduling
In cascade scheduling, the last worker thread in the ordered
list can schedule the next thread in a thread set. When the
first thread runs it can schedule a second worker thread, the
second thread may in turn schedule a third worker thread,
and so on. The cascade of scheduling threads stops when a
last worker thread doesn’t schedule a next thread. In
cascading scheduling, only the last thread in the thread
set’s order list may schedule a next thread.

4.4.3 Hybrid scheduling
Top function scheduling and cascade scheduling can be
used in tandem in hybrid scheduling. In hybrid scheduling,
the top function schedules some number of threads via top
function scheduling. The last thread started by the top
function may schedule the next thread to initiate a cascade.
In hybrid scheduling, cascade scheduling may commence
only after the top function has scheduled all its threads
4.5 Closed thread sets
Once the last and final thread has been scheduled in a
thread set, the thread set is closed. When a thread set is in
closed state, no additional worker threads can be started
and no more threads are added to the ordered list. Closing a
thread set initiates propagation of resolved dependencies
between threads sets as described in Section 5.4.

5. SYNCHRONIZATION
Synchronization [19,46] is the coordination of concurrent
threads of execution to ensure that they don’t interfere with
each other or access shared resources in an inconsistent or
unsafe way. For instance, when two threads are processing
received packets for the same TCP connection in horizontal
parallelism, updates to the Protocol Control Block (PCB)
[51] must be synchronized to ensure correctness. Similarly,
if the IP and TCP protocol layers of a TCP/IP packet are
processed in parallel, TCP processing cannot update the
PCB until the IP processing completes and has verified the
packet is correct. Historically, locks or mutexes [18] have
been used for synchronization; however, in this paper we
introduce a novel mechanism called dependencies that is
specifically designed for synchronization in serial data
processing. The key design point is that one thread can
have a dependency on processing in another thread .

5

Figure 6: Threads, thread sets, and datapaths. This example
shows a datapath with three thread sets processing packets.
Threads within each thread set are scheduled to process protocol
layers of the packet being processed by the thread set. Note that
thread sets are in the ordered list of the datapath, and threads are
in the ordered list of their thread set.

Figure 7: Example of hybrid scheduling with top-function
(parser-scheduling) and cascade scheduling. In this example,
hybrid scheduling is used to schedule worker threads to process a
TCP in IPv4 in IPsec in IPv6 in Ethernet packet; IPsec encrypts
the encapsulated IPv4 packet. When a packet is input, the parser-
scheduler parses the Ethernet, IPv6, and IPsec headers (those in
plain text), and schedules worker threads to process them as
indicated by the solid green arrows from the top function. IPsec
processing decrypts the encapsulated IPv4 packet and schedules a
thread to process the IPv4 header in cascade scheduling. The IPv4
thread then schedules a thread to process the TCP header. Cascade
scheduling is indicated by the dashed red arrows.

A thread with a dependency cannot proceed to execute in
the critical region corresponding to the dependency until
the thread it depends on resolves the dependency.
Dependencies are strictly unidirectional so that a thread can
have a dependency on an upstream thread, but not the other
way around. This unidirectional property ensures that there
are no circular dependencies, and hence deadlock [47] with
dependencies is not possible.

5.1 Wait and resolve points
Dependency synchronization is expressed as resolve points
and wait points. A resolve point is a point in the code path
of a thread at which processing has been done to satisfy a
dependency in downstream threads. A wait point is a point
in the code path of a thread at which execution cannot
proceed until the dependency has been resolved by
upstream threads. Wait and resolve primitives are defined
in an API to synchronize between wait and resolve points.

As an example, consider a dependency between threads
processing the TCP and IP layers of a packet. The TCP
thread can perform basic validation of the TCP header,
such as checksum validation, in parallel with IP layer
processing. However, the TCP thread cannot commit
changes to the TCP PCB before the IP thread has validated
the IP header. An “IP layer accepted packet” dependency
may be employed with a wait point in the TCP layer code
path before updating the PCB, and a resolve point in the IP
layer code path after the packet is validated.

5.2 Dependency resolution signals
When a thread resolves a dependency, downstream threads
in the thread set are informed of the dependency resolution
and execution can proceed through wait points for the
dependency. This is done by propagating a resolution
signal to downstream threads10. A resolution signal
propagates until one of the following conditions are met:

1. The end of the ordered list for the thread set is
reached.

2. A thread is encountered that blocks, that is it must
resolve, the same dependency being resolved.

3. A thread is encountered that has already resolved
the same dependency.

Figure 8 shows an example of dependency resolution.

5.3 Watchers, blockers, and waiters
With respect to a dependency, a thread may be a watcher,
blocker, or waiter. A dependency watcher is a thread that is
interested in a dependency and may wait on it. A
dependency waiter is a thread actively waiting on a
dependency to be resolved; while it’s waiting the thread is
blocked and cannot proceed until the dependency is
resolved. A dependency blocker is a thread that blocks a
dependency; the thread must resolve the dependency before
the resolution signal is propagated to downstream threads.
When a thread starts, the dependencies that the thread
blocks are declared and the thread set maintains a list of
blockers for each dependency. When a thread terminates,
any unresolved blocked dependencies are automatically
resolved. A thread may be a blocker, watcher and waiter of
the same dependency. Figure 9 illustrates the operation of
watchers, blockers, and waiters.

5.4 Inter thread set dependencies
Dependency resolution may be propagated from one thread
set to another in the ordered list of thread sets of a datapath.
Dependencies that can be propagated between thread sets
are called propagated dependencies and are declared in the
configuration of a datapath. Propagated dependencies must
be a subset of all the dependencies defined for a datapath,
and a dependency is either propagated or non-propagated.
With regards to dependency resolution amongst threads in a
thread set, propagated dependencies are indistinguishable
from non-propagated dependencies.

10 In an OS, the resolution signal could be implemented using a condition variable [2].

6

Figure 8: Example of dependency resolution. The columns,
labeled Thread 1 to Thread 4, refer to four threads in a thread set.
The rows of the diagram, labeled A to E, provide points in the
timeline for discussion. There are two dependencies: the “circle
dependency” and the “diamond dependency”.
Line A shows the state of dependencies before execution
commences. Line B shows the initial execution allowed in the
four stages-- green areas represent portions of the code path that
have no dependencies and can run in parallel from the start. In
Line C, Thread 1 resolves the circle dependency-- at this point the
blue section in Thread 2 can now run. In Line D, Thread 2
resolves the second instance of the circle dependency-- at this
point the blue section in Thread 4 can run; although the circle
dependency is now resolved for Thread 3, it cannot proceed since
it is still waiting on the diamond dependency. Finally, in Line E
Thread 2 resolves the diamond dependency so that the red
portions of Thread 3 and Thread 4 can now run.

Propagated dependencies that have been resolved and are
not blocked by the last thread of a closed thread set may be
resolved in the next thread set in the datapath’s ordered list.
Resolving a dependency in the next thread set is done by
propagating a dependency resolution signal starting from
the first thread in the next thread set.
If a dependency resolution is propagated between thread
sets and the resolution signal reaches the last thread in the
following thread set which is also closed and doesn’t block
the dependency, then the dependency resolution may be
further propagated to the “next next” thread set.

5.5 Dependency channels
In-order processing requirements may be relaxed such that
packets in the same flow are processed in order, but packets
in different flows have no processing order requirements
(similar to multi-queue). Thread sets processing packets of
the same flow are grouped together in a dependency
channel. Each dependency channel contains an ordered list
of thread sets, and in-order processing is maintained within
the channel. A datapath maintains a table of dependency
channels. Figure 10 illustrates dependency channels.

A thread set joins a dependency channel via a “join
channel” operation. A thread set is joined to a channel by
adding it to the tail of the ordered list of thread sets for the
channel. Once joined to a dependency channel, a thread set

is joined for its remaining lifetime processing a packet. To
avoid deadlock, the relative ordering of thread sets in a
dependency channel must be the same as that in the
ordered list of the datapath. When a thread set is done and
is joined to a dependency channel, it is removed from the
ordered list of the dependency channel.
When a thread set starts, it is not automatically joined to a
channel. Some processing is needed on the packet to
determine its flow, and hence which channel to join11. A
thread set is not required to join a channel, as might be the
case of a packet with no associated flow.

5.6 Channel dependencies
A set of channel dependencies is used for synchronization
amongst the thread sets of a channel. Channel dependencies
are declared in datapath configuration and are a subset of
propagated dependencies for a datapath. A propagated
dependency is either a “channel dependency” or a “non-
channel dependency”.
Channel dependencies that have been resolved and are not
blocked by the last thread in a closed thread set can be
propagated to the next thread set in the ordered list of the
dependency channel to which the thread set joined. The
channel dependencies are used across all channels in a
datapath, but they are only propagated amongst thread sets
of the same channel and so are effectively independent sets
of dependencies. Channel dependencies are propagated
between thread sets of a dependency channel following the
rules for inter thread set dependencies as described in
Section 5.4.

11 Typically, the identifying flow tuple in packets is hashed to determine a flow. For instance, for a TCP/IP packet a hash might be
computed over the TCP 4-tuple which includes the IP addresses and TCP port numbers. Commonly used hash functions are Jenkins [27],
Toeplitz [28], and SipHash [5].

7

Figure 9: Example of dependency watchers, blockers, and
waiters: The diagram shows the list of blocker and watcher
threads for a dependency. Once a blocker has resolved a
dependency, it is removed from the list of blockers for the
dependency. A watcher becomes a waiter when it is actively
waiting on a dependency (waiters are not shown). The rows,
labeled A to D, provide points in the timeline for discussion.
In the initial state, Line A, there are three blockers and three
watchers: Thread 10 and Thread 17 are blockers but not watchers,
Thread 13 and Thread 19 are watchers but not blockers, and
Thread 12 is both a watcher and a blocker. In Line B, Thread 17
resolves the dependency. The resolution signal is propagated to
Thread 19 and then stops since the end of the ordered list is
reached. Note that Thread 17 is not a watcher so that it is
effectively creating a new independent instance of the dependency
In Line C, Thread 10 resolves the dependency. The resolution
signal is propagated to Thread 12, but stops since Thread 12 is a
blocker. Subsequently in Line D, Thread 12 resolves the
dependency. The resolution signal is propagated to Threads 13
and 17, but stops there since the dependency is already resolved
for Thread 19.

Figure 10: Example of channel dependencies. Dependency
channels are organized in a hash table, where each element
contains an ordered list of thread sets joined to a channel. When a
packet is received it is joined to a channel by hashing over the
identifying 4-tuple of the packet, using the result to index the hash
table, and then adding the thread set to the tail of the ordered list
for the dependency channel. In the diagram, the thread sets for the
second channel are expanded to show their threads and
dependency resolution propagation for a channel dependency.

6. SERIAL DATA PROCESSING UNIT
The Serial Data Processing Unit, or SDPU, is a domain
specific processor and architecture for fully programmable,
network processing and parallelism. The architecture of the
SDPU is shown in Figure 11. Figure 12 shows the flow of a
packet through the SDPU and the relationships between
components.
The SDPU consists of clusters of RISC-V [4] CPUs, where
each cluster contains some number of worker CPUs and
parser CPUs. Worker CPUs provide hardware threads to
run the threads described in Section 4.1. Parser CPUs work
in tandem with cluster schedulers to perform parser-
scheduling (Section 4.4.1) of threads that run in worker
CPUs. Worker and parser CPUs are user programmable.
Outside of the CPU clusters are the dispatcher, global
scheduler, and accelerators. The dispatcher dispatches
received packets to clusters to be processed. The global
scheduler maintains the ordered list of thread sets and
dependency channels for a datapath. Accelerators
accelerate functions on behalf of worker CPUs. These
components are generally not user programmable and
implement the “uncore” functions in the SDPU.

6.1 Implementation
We implemented a Proof of Concept (PoC) of the SDPU in
a software emulator and in FPGA.
The software emulator runs on a Linux RISC-V virtual
machine (VM) in either Docker [43] or QEMU [1]. The
emulator is a fully functional implementation of the SDPU,
and is provided as a library to be linked with test programs.
The emulator is configurable to allow quick evaluation of
different configurations for the numbers of clusters, worker
CPUs, parser CPUs, and accelerators. It also allows us to
extrapolate performance of hardware implementation.
For the FPGA implementation we run ten RISC-V CPUs in
a Xilinx U200 FPGA [61]. One cluster is created with two
worker CPUs and a parser CPU. The rest of the CPUs are
dedicated to emulating the uncore components of the
SDPU12. We also implemented some accelerators in RTL13.
Communication amongst components is message based and
uses hardware FIFOs for high performance14. The FPGA
implementation allows us to test with native RISC-V CPUs
and to develop uncore components in RTL [8].
Users write applications for their data path in the PANDA
programming model [39]. A program includes the code for
parser CPUs and worker CPUs. We modified the LLVM
compiler [31] to optimize compilation for the SDPU CPUs,
including emitting domain specific custom instructions
supported in parser and worker RISC-V CPUs.

6.2 SDPU Performance
The SDPU is designed to maximize throughput and
minimize latency. Throughput can be measured by packets
processed per second (pps). Latency is measured as the
time from when a packet starts to be processed to the time
that processing completes. Tail latency is a key metric [14],
so we consider the 99.9th percentile of tail latency.
Parallelism is an important technique for high throughput,
and is employed in the SDPU at multiple levels. The major
components operate in parallel as a pipeline. Thread sets
are instantiated in clusters for horizontal parallelism, and
worker threads run in worker CPUs for vertical parallelism.
A cluster may have multiple parser CPUs that can run in
parallel. Accelerators can run in parallel with CPU
processing and other accelerators, and they may also
employ internal parallelism.
Latency is a function of the amount of serialized execution
in processing a packet, so we use vertical parallelism to
reduce the time spent in serialized processing. Tail latency
correlates to variances in the processing path. Variance is
minimized in the SDPU by deterministic processing-- no
OS, no interrupts, no cache misses, no exceptions, etc.
In this section, we analyze performance of workloads that
exhibit idealized parallelism where latency and throughput
are independent; we use a TCP SYN cookies program as a
reference application. In Section 7 we consider workloads
where processing latency correlates with throughput.

12 The final design goal is for all the uncore components in the SDPU to run in RTL. Worker and parser CPUs are intended to run as bare
metal CPUs without an OS and with a hardware CPU scheduler that orchestrates processing threads.

13 To date, we implemented SipHash [5], CRC [40], Murmur3 hash [3], and LZF compression [62] as hardware accelerators in RTL.
14 Hardware FIFOs are lockless, and enqueue and dequeue operations are respectively done by a single memory store and load.

8

Figure 11: Annotated block diagram of the Serial Data
Processing Unit (SDPU). The components of the SDPU include:
(1) some number of CPU clusters, (2) each cluster has some
number of enhanced RISC-V worker CPUs, (3) each cluster has at
least one RISC-V parser CPU, (4) a threading and synchronization
unit that includes the cluster schedulers and the global scheduler
that manage scheduling and dependencies for horizontal and
vertical parallelism, (5) a high performance interface to very fast
memory (6), a high performance interconnect fabric to
accelerators, (7) external accelerators (in ASIC, FPGA, etc.).

6.2.1 Reference program for performance analysis
To evaluate performance, we wrote a program for the
SDPU and Linux to generate TCP SYN cookies [11]. This
is a stateless application that receives TCP SYN packets,
and then parses and validates the Ethernet, IPv4 headers,
TCP headers, and TCP options. If the validations succeed
for a SYN packet then the program creates a TCP SYN-
ACK packet with a SYN cookie. Table 1 shows the number
of assembly instructions for the two implementations.

6.2.2 Worker CPU Performance
Worker CPUs are optimized so that 99% of CPU cycles are
dedicated to executing instructions in user programs
without pipeline stalls. This is accomplished by:

• Eliminating infrastructure overhead (no OS)
• Accelerating complex functions like crypto
• Avoiding cache misses, prefetching as needed
• ISA extensions (e.g. checksum calculation15)
• Low latency thread context switch

With these optimizations there are no wasted CPU cycles
and processing is deterministic so that mean latency and
tail latency are minimized. Assuming idealized parallelism,
the number of CPUs needed to achieve a given throughput
is a straightforward calculation using Equation 1.

Table 1: Number of instructions to generate TCP SYN
cookies. This compares the number of instructions needed in
Linux on x86 and in the SDPU to process the fields of a TCP-
SYN packet and generate a SYN cookie. Note the SDPU divides
work between CPUs and parser CPUs as indicated by (parser).

Protocol Field Linux ins. count SDPU ins. count

EtherType with lookup > 50 10 2 (parser)

IP protocol, IHL with
length validation

30 4 (parser)

Addresses and ports > 100 (mostly look
 up cost)

10 (lookups are
 asynchronous)

IPv4 header checksum 20 2

IP flags, Ident, Frag Offset 10 10

TOS 15 15

TCP flags 30 2 (parser)

TCP checksum 40 (incl. pullup) 10

Other TCP fields 30 30

TCP options 40 40 4 (parser)

Syn cookie creation 50 50

Total >500 177 12 (parser)

15 Unlike x86 and ARM, RISC-V lacks processor flags so there is no add-with-carry instruction typically used to make Internet checksum
calculation efficient. We created “checksum add” and “checksum fold” RISC-V instructions that don’t require add-with-carry.

9

Figure 12: SDPU processing flow. The steps for processing a packet are numbered 1 to 10. Communication between components is
performed through message FIFOs. For efficiency, the SDPU operates on a parsing buffer containing the first N bytes of headers (parsing
buffers are a common technique in high performance routers). Parser and worker CPUs run user written programs.

6.2.3 Parser CPU Performance
To optimize parsing performance, we implemented a set of
parser instructions in RISC-V [49]. These instructions
encompass the domain specific operations of parsing, and
can efficiently parse a wide range of protocols including
some of the more “difficult” protocol constructs to parse
like Type Length Values (TLVs), flag-fields like in GRE
[15], and protobufs [41] for gRPC16 [20].
Each parser instruction replaces five to three hundred CPU
integer instructions with equivalent functionality. For
parsing Internet protocols, we expect the ratio of parser
instructions to equivalent integer CPU instructions to be
about 15:1. Parser instructions have a lower IPC which we
estimate to be about 0.4 on average. Assuming a CPU IPC
of 1.4 for parsing using integer instructions, the relative
throughput speedup from parser instructions is 4.3.
Figure 13 compares parsing performance between the
SDPU parser and x86 for different protocols. Figure 14
shows a detailed comparison for parsing the IPv4 header.

6.2.4 Throughput analysis
The components of the SDPU (Figure 12) run in parallel in
a pipeline so throughput is bounded by the minimum
throughput of any component in the processing path. CPUs
are likely to be the throughput bottleneck since they are
programmable and the biggest performance variable (non-
programmable components can presumably be provisioned
with sufficient resources for a desired load).
Per Table 1, a worker CPU requires 177 instructions to
process a TCP SYN packet. Assuming an IPC of 1.4, that
gives about 15.8 million pps on a single 2GHz CPU. So,
sixty-four worker CPUs are needed to sustain 1 billion pps
throughput.
Based on TCP SYN cookie processing in Table 1, twelve
parser instructions are needed to parse a TCP SYN packet.
Assuming an IPC of 0.4 for parser instructions that gives
66.6 million pps for a single 2GHz CPU. Hence, sixteen
parser CPUs are needed to sustain 1 billion pps throughput.

6.2.5 Latency analysis
Latency of a single packet through the SDPU is the sum of
latencies of each of the inline processing components.
Referring to Figure 12, a packet is processed in sequence
by the dispatcher, cluster front end, parser, and cluster
scheduler. The parser is user programmable and requires
serialized processing per packet; referring to Table 1,
twelve parser instructions are required to parse a SYN
packet and with an IPC of 0.4 that gives a latency of thirty
cycles. Extrapolating from the PoC and design, we expect a
maximum latency of five cycles for each of the three
uncore components. We budget five cycles of latency for
the logic of sending and receiving packets. Summing these
up, our estimate for packet processing latency of the parser
and uncore components is fifty-five clock cycles.
We split processing for the SYN cookies program into five
protocol layers: Ethernet, IPv4, TCP, TCP options, and
SYN cookie creation. We assume there are enough threads
for unconstrained vertical parallelism, so per packet
processing latency is the maximum of that of any protocol
layer (Equation 4). Per Table 2, the maximum processing
latency is the SYN cookie creation with thirty-six cycles.
Adding the numbers, the per packet latency of the SDPU,
assuming a 2GHz CPU and system clock, is about forty-
five nanoseconds. As we mentioned, the SDPU is designed
to minimize variance, so our expectation for 99.9th

percentile tail latency is fifty nanoseconds.
Table 2: Instruction counts and cycles for the SDPU for
protocol layer processing for TCP SYN cookies program. The
instruction counts for each protocol layer are derived from Table
1. The number of cycles is calculated assuming an IPC of 1.4.

 Protocol layer Ins. count Number of cycles

Ethernet 10 8

IPv4 37 27

TCP 40 29

TCP options 40 29

SYN Cookie creation 50 36

16 In combination with integer instructions, parser instructions are Turing Complete [58] in that we can fall back to using plain integer
instructions. We do this for parsing nested protobufs [41] in gRPC [20].

10

Figure 13: Parser performance. Test cases are IPv4, TCP with
options, and a gRPC example with nested protobufs. For each
case, the number of instructions and cycles are shown for an x86
implementation using plain instructions, and an implementation in
RISC-V with SDPU parser instructions. Note that lower is better.

Figure 14: Parsing IPv4. The blue boxes show the C source code
and disassembly for an x86 implementation, the orange boxes
show the C source code and disassembly for the SDPU parser.

7. THE SINGLE FLOW BOTTLENECK
The benefits of parallelism are limited by the amount of
parallelism available to programs, and by the overheads for
orchestrating parallelism [23]. The effects in networking
are particularly acute since networking is fundamentally
serial data processing.
The worst case scenario in network processing is when all
the packets being processed belong to a single flow that
requires processing in a critical region. For instance,
updating a TCP PCB is a critical region that must be
serialized. If all packets being processed were for the same
TCP connection, then a portion of processing for every
packet is serialized with respect to other packets. In the
case of multi-queue, this serialization is facilitated by
steering packets of the same flow to a single CPU, however
that results in no parallelism and maximum throughput is
the reciprocal of the time it takes to process a packet
(Figure 2(b)). In even a moderately high speed network, the
time to process a packet is typically much greater than inter
packet arrival time, hence throughput drops precipitously
compared to idealized parallelism. We refer to this problem
as the Single Flow Bottleneck, or SFB.
Addressing the Single Flow Bottleneck is challenging, even
in hardware, since it’s impossible to eliminate the need for
serial execution in all workloads. Our strategy is to
minimize the time spent in critical regions and to minimize
the overheads of parallelism. Applying this strategy, we
demonstrate a solution that addresses the Single Flow
Bottleneck for two use cases: 1) a router forwarding
packets [57], and 2) a high throughput TCP connection.

7.1 General strategy
In Figure 15(a), the solution to the Single Flow Bottleneck
using horizontal parallelism is suggested. The portion of
execution that must be serialized, for instance updating a
TCP PCB, is identified as a critical region. Packets for a
flow are processed by thread sets in horizontal parallelism
and critical region processing is serialized and
synchronized between threads. Processing outside the
critical regions can be done in parallel. Throughput is
bounded by the reciprocal of time processing the critical
region plus synchronization overhead.
In Figure 15(b), the benefits of splitting critical regions are
illustrated. Splitting critical regions is possible if there are
no dependencies between the sub-regions. Throughput is
bounded by the reciprocal of time processing the largest
critical region plus synchronization overhead.
To minimize the time processing a critical region, its logic
may be implemented in an accelerator. Such an accelerator
could implement a very tight event loop in hardware to
process requests quickly:
 while (1) {

if (!next_request)
 wait
dequeue & process critical region

 }

For highest throughput, an accelerator should parallelize as
much processing as possible outside of critical regions.
This includes prefetching memory and staging requests for
critical region processing.
If access to the critical region needs to be well ordered then
an ordered accelerator can be used. An ordered accelerator
associates a dependency with the accelerator so that waiting
and resolving the dependency is handled transparently as
part of accelerator processing. This eliminates the need for
the program to use explicit wait and resolve primitives to
synchronize accelerator processing.

7.2 Solving SFB in packet forwarding
In packet forwarding there are two operations performed in
critical region processing: next hop lookup and packet
transmission. Both of these can be implemented as ordered
accelerators. The pseudo code for invoking them is:
 next_hop = lookup_nexthop(dest_address)
 send_packet(packet, next_hop)

Next hop lookup is usually a Longest Prefix Match [10], or
LPM, lookup. The need for critical region processing arises
from a requirement that routing must be consistent during a
route change. The LPM lookup can be implemented as an
ordered accelerator that is associated with a non-channel
dependency. Internally, the accelerator can use a readers-
writers lock [54] for the critical region, this allows route
lookups to be done in parallel.
Packet transmission can be modeled as an accelerator that
manages transmit queues with some queuing discipline.
The critical region processing is an enqueue operation that
can be efficiently implemented.
With optimized accelerator hardware, both the overhead of
parallelism and critical region processing for route lookup
and transmission accelerators can be minimized. Assuming
critical region latency plus overhead is two nanoseconds, a
2Ghz clock frequency, and applying the equation in Figure
15(b), a forwarding rate of 1 billion pps is achievable.

11

Figure 15: Addressing the single flow bottleneck. (a) applies
horizontal parallelism with critical regions to process packets of
the same flow on multiple threads for increased throughput. (b)
shows how splitting critical regions increases throughput. The
dotted line indicates line rate throughput, and critical regions are
in yellow and purple. Tput gives the maximum throughput

7.3 Solving the SFB in TCP
We demonstrate addressing Single Flow Bottleneck in the
TCP receive path, similar techniques would apply to the
send path. There are two operations in the critical region of
TCP receive processing: 1) reading and updating the PCB,
and 2) enqueuing received data to the socket buffer. These
operations are independent, so can we split them into two
critical regions. We implement the processing of these in
two accelerators: “update PCB” and “socket buffer”. The
“update PCB” accelerator will have the greater latency, so
we’ll focus on that one.
The “update PCB” accelerator can implement a fast path
for TCP Header Prediction [6]. The core pseudo code17 is:
 if ((tcp_flags & FMASK) ==
 tp→pred_flags) && seq == tp→rcv_nxt) {
 if (len == 0)
 /* Pure ack handling */
 else if(ack == tp→snd_una) {
 tp→rcv_next += payload_len;
 if ((int)seq – tp→rcv_acked) >= 0)
 *need_ack = true
 }
 }

In the fast path when the header is correctly predicted,
critical processing is fully contained in the accelerator for
lowest latency, and worker CPUs don’t access the PCB so
cache locality of flow related data structures isn’t pertinent.
For programmability, this logic could be implemented in a
CPU thread that is driven by a hardware event loop. In a
CPU the above logic requires about twenty instructions,
and assuming an IPC of 1.4 and CPU clock frequency of 2
Ghz, the critical region processing latency is about eight
nanoseconds. Adding two nanoseconds for synchronization
overhead and applying the equation in Figure 15(b), the
maximum throughput for a single TCP flow is 100 million
pps. Figure 16 illustrates the benefits of this solution.

8. DISCUSSION & OPPORTUNITIES
In this paper we introduce an architecture for parallelism in
network processing. Networking is inherently serialized
processing, and our architecture elicits fine grained
parallelism in serial data processing which has previously
been considered an oxymoron. While network processing is
the poster child of serial data processing, there are other use
cases that could benefit from this architecture, including
communications for collective operations [37], storage
operations to a flash drive, or database queries.
A recent trend in network processing is programmability in
the high performance path such as P4 [7]. For this, we
advocate placing CPUs in the data path which we call
CPU-in-the-datapth. This idea runs counter to conventional
wisdom since performance of general purpose CPUs
doesn’t compare with that of specialized fixed function
ASICs, however, in our architecture we employ domain
specific CPUs for network processing. RISC-V [4], with its
open ISA and ease of customization, is the perfect
foundation for domain specific CPUs. We can take out
things not needed for network processing, such as the
floating point and vector unit, and we can add our own
ISA extensions specific to network processing. We have
defined new instructions in four classes: Parser, Threading
and Synchronization (dependency primitives), Accelerator
(general instruction to invoke accelerators), and Arithmetic
(including instructions for checksum computation). With
these extensions, horizontal and vertical parallelism, and
in-line acceleration we project that CPU-in-the-datapath
will achieve >85% of ASIC performance, but be fully
programmable with lower cost and power consumption.
A programmable data path is a good start, however for
widespread adoption it must be easily programmable.
While Domain Specific Languages (DSLs), like P4 [42],
have made inroads in data path programmability, they tend
to be unfamiliar to programmers18 and have a steep learning
curve. With ease-of-use in mind, we eschew DSLs and
provide a C library [39] for programming a data path. Our
programming model is language agnostic, and we intend to
support it in other languages including Python and Rust.
Compilers are essential to data path programmability. Their
function is to take the programmer’s expression of what
they want to do and convert it into an optimized binary
image for a target. Accordingly, we modified the LLVM
CLANG [9] compiler specifically for our model. We have
also defined a new Intermediate Representation (IR) in
JSON called Common Parser Language (or CPL) [24] that
encourages “freedom of front end languages”. We are also
investigating compiler techniques, including using CLANG
and MLIR [35] as a parallelizing compiler [60], to find
opportunities for both horizontal and vertical parallelism
and automatically insert dependency primitives.

17 This code snippet is adapted from Van Jacobson’s famous “TCP in 30 Instructions” email [26]. The Linux implementation of TCP
Header Prediction [30] “loosely follows” that with some additional processing of TCP timestamps and the TCP receive window.

18 We note there are 15.7 million Python, & 11 million C/C++ programmers worldwide [50] and these languages are generally familiar.

12

Figure 16: Maximum achievable throughput (pps) of TCP for
different numbers of connections. Four methods are compared:
Linux with multi-queue, SDPU with critical region accelerators,
and optimized multi queue (with SDPU as a base) with hash and
round robin steering. We assume that there are 128 threads (or
queues) for each method where a thread can process 7.8 million
packets per second for a maximum throughput of one billion pps.

REFERENCES
[1] About QEMU. QEMU Documentation.

https://www.qemu.org/docs/master/about/index.html

[2] Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-Dusseau.
2023. Operating Systems: Three Easy Pieces (Version 1.10).
Arpaci-Dusseau Books. Chapter 30.
https://pages.cs.wisc.edu/~remzi/OSTEP/

[3] Austin Appleby. Murmur3 hash code in MurmurHash3.cpp.
https://github.com/aappleby/smhasher/blob/master/src/Murmu
rHash3.cpp

[4] Krste Asanović and David A. Patterson, Instruction Sets
Should Be Free: The Case For RISC-V. April 2014. Electrical
Engineering and Computer Sciences University of California
at Berkeley. Technical Report No. UCB/EECS-2014-146.
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-
2014-146.pdf

[5] Jean-Philippe Aumasson and Daniel J. Bernstein. September
2018. SipHash: a fast short-input PRF. In Cryptology ePrint
Archive. https://eprint.iacr.org/2012/351.pdf

[6] D. Borman, B. Braden, V. Jacobson, and R. Scheffenberger
(E.d). September 2014. GTCP Extensions for High
Performance. RFC 7323. Section 5.6. DOI
10.17487/RFC7323.
https://datatracker.ietf.org/doc/html/rfc7323

[7] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard. Nick
McKeown, Jennifer Rexford, Cole Schlesinger, Dan Talayco,
Amin Vahdat, George Varghese, and David Walker. P4:
programming protocol-independent packet processors. In
ACM SIGCOMM Computer Communication Review. Volume
44 Issue 3. pp 87–95. DOI 10.1145/2656877.
https://doi.org/10.1145/2656877.2656890

[8] Pong P. Chu. 2006. RTL Hardware Design Using VHDL. John
Wiley & Sons, Inc., Hoboken, New Jersey. ISBN-13: 978-0-
471-72092-8

[9] Clang: a C language family frontend for LLVM.
https://clang.llvm.org/

[10] Douglas Comer. 2008. Computer Networks and Internets (5th
edition). Pearson/Prentice Hall. p. 386. ISBN 978-0-13-
606698-9

[11] J. Corbet. 2008. Improving TCP syncookies. LWN.net.
https://lwn.net/Articles/277146/

[12] J. Corbet. 2008. Multiqueue Networking. LWN.net,
https://lwn.net/Articles/289137/

[13] Willem de Brujin. 2013, rps: selective flow shedding during
softnet overflow. Linux kernel patch.
https://patchwork.ozlabs.org/project/netdev/patch/136639361
2-16885-1-git-send-email-willemb@google.com/

[14] J. Dean and L. A. Barroso. The tail at scale. In
Communications of the ACM, Volume 56 Issue 2. pp. 74–80.
DOI 10.1145/2408776.2408794.
https://www.barroso.org/publications/TheTailAtScale.pdf

[15] D. Farinacci, T. Li, S. Hanks, D. Meyer, and P. Traina.
March 2000. Generic Routing Encapsulation (GRE). RFC
2784. RFC Editor. DOI 10.17487/RFC2784.
https://datatracker.ietf.org/doc/html/rfc2784

[16] Michael J. Flynn. September 1972. Some Computer
Organizations and Their Effectiveness. In IEEE Transactions
on Computers. Volume C-21 Issue 9. pp. 948–960. DOI
10.1109/TC.1972.5009071

[17] Glen Gibb, George Varghese, Mark Horowitz, and Nick
McKeown. October 2013. Design Principles for Packet
Parsers. In Architectures for Networking and
Communications Systems. DOI
10.1109/ANCS.2013.6665172.
http://yuba.stanford.edu/~nickm/papers/ancs48-gibb.pdf

[18] R. Guerraoui, H. Guiroux, R. Lachaize, V. Quéma, and V.
Trigonakis. July 1990. Lock–Unlock: Is That All? A
Pragmatic Analysis of Locking in Software Systems. In ACM
Transactions on Computer Systems. Volume 36 Issue 1
Article No.: 1. pp 1–149. https://doi.org/10.1145/3301501

[19] V. Gramoli. 2015. More than you ever wanted to know about
synchronization: Synchrobench, measuring the impact of the
synchronization on concurrent algorithms. In Proceedings of
the 20th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming. ACM. pp. 1–10.
https://dl.acm.org/doi/10.1145/2858788.2688501

[20] gRPC: Core concepts, architecture and lifecycle.
https://grpc.io/docs/what-is-grpc/core-concepts/

[21] John L. Hennessy and David A. Patterson. 2019. Computer
architecture: a quantitative approach (6th edition). Morgan
Kaufmann Publishers, an imprint of Elsevier. Cambridge,
Mass. ISBN 978-0-12-811905-1

[22] John L. Hennessy and David A. Patterson. 2019. Computer
architecture: a quantitative approach (6th edition). Morgan
Kaufmann Publishers, an imprint of Elsevier. Cambridge,
Mass. p. 540. ISBN 978-0-12-811905-1

[23] John L. Hennessy and David A. Patterson. 2012. Computer
architecture: a quantitative approach (5th edition). Morgan
Kaufmann Publishers, an imprint of Elsevier. Waltham,
Mass. pp. 349-351. ISBN 978-0-12-383872-8

[24] Tom Herbert, Pratyush Khan, and Aravind Buduri. 2022.
High Performance Programmable Parser. Slides from Netdev
0x16 conference. Slides 9-17.
https://netdevconf.info/0x16/papers/11/High
%20Performance%20Programmable%20Parsers.pdf

[25] Tom Herbert and Willem de Brujin. May 2014. Scaling in the
Linux Stack. Linux Kernel Documentation.
https://docs.kernel.org/networking/scaling.html

[26] Van Jacobson. September 1993. Email to Craig Partridge.
“Fwd: TCP in 30 instructions”.
https://www.pdl.cmu.edu/mailinglists/ips/mail/msg00133.ht
ml

[27] Bob Jenkins. November 2013. A hash function for hash
Table lookup.
http://www.burtleburtle.net/bob/hash/doobs.html

13

https://www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-146.pdf
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-146.pdf
https://doi.org/10.1109%2FTC.1972.5009071
https://en.wikipedia.org/wiki/IEEE_Transactions_on_Computers
https://en.wikipedia.org/wiki/IEEE_Transactions_on_Computers
https://en.wikipedia.org/wiki/IEEE_Transactions_on_Computers
https://datatracker.ietf.org/doc/html/rfc2784
https://datatracker.ietf.org/doc/html/rfc2784
https://doi.org/10.1145/2656877.2656890
https://datatracker.ietf.org/doc/html/rfc7323
https://eprint.iacr.org/2012/351

[28] Hugo Krawczyk. 1995. New Hash Functions for Message
Authentication. In EUROCRYPT '95. Lecture Notes in
Computer Science. Vol. 921. pp. 301–310. DOI 10.1007/3-
540-49264-X_24. ISSN 0302-9743.
https://link.springer.com/content/pdf/10.1007/3-540-49264-
X_24.pdf

[29] Jorg Liebeherr and Erhan Yimaz. May 1999.
Workconserving vs. Non-workconserving Packet
Scheduling: An Issue Revisited. In Proceedings of
IEEE/IFIP IWQoS '99.
https://www.comm.utoronto.ca/~jorg/archive/papers/iwqos99
-conserv.pdf

[30] Linux kernel tcp_rcv_established in tcp_input.c.
https://github.com/torvalds/linux/blob/master/net/ipv4/tcp_in
put.c

[31] The LLVM Compiler Infrastructure. llvm.org

[32] Dave McCracken. June 2002. POSIX Threads and the Linux
Kernel. In Proceedings of the 2002 Ottawa Linux
Symposium. pp. 330-337.
https://www.kernel.org/doc/ols/2002/ols2002-pages-330-
337.pdf

[33] Durganshu Mishra. October 2023. The Power of Parallel
Programming: Why It’s a Necessity. Medium.com.
https://medium.com/@durganshu/the-power-of-parallel-
programming-why-its-a-necessity-2429e4622f5e

[34] Gordon E. Moore. April 1965. Cramming More Components
onto Integrated Circuits. Electronics. pp. 114-117. Reprinted
in Proceedings of the IEEE, Vol. 86, No.1., January 1998.
https://www.cs.utexas.edu/~fussell/courses/cs352h/papers/m
oore.pdf

[35] Multi-Level Intermediate Representation Overview.
https://mlir.llvm.org/

[36] Gor Nishanov. November 2018. Fibers under the magnifying
glass.
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p
1364r0.pdf

[37] Nvidia.Collective Operations. NCCL2.19.
https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/us
age/collectives.html

[38] Open Systems Interconnection — Basic Reference Model:
The Basic Model. June 1999. ISO/IEC 7498-1:1994.
https://www.iso.org/standard/20269.html

[39] PANDA (Protocol And Network Datapath Acceleration).
https://github.com/panda-net/panda

[40] W. Petersen and D. T. Brown. January 1961. Cyclic Codes
for Error Detection. In Proceedings of the IRE. Volume 49
Issue 1. pp. 228–235. DOI 10.1109/JRPROC.1961.287814.
https://apt.cs.manchester.ac.uk/ftp/pub/apt/papers/Peterson-
Brown_61.pdf

[41] Protocol Buffers Documentation. https://protobuf.dev/

[42] P416 Language Specification, version 1.2.2. May 2021. The
P4 Language Consortium. https://p4.org/p4-spec/docs/P4-16-
v1.2.2.html

[43] Vivek Ratan. Docker: A Favourite in the DevOps World.
https://www.opensourceforu.com/2017/02/docker-favourite-
devops-world/

[44] Thomas Rauber and Gudula Runger. 2013. Parallel
Programming for Multicore and Cluster Systems. Springer.
Chapter 3. ISBN 978-3-642-43806-6

[45] Thomas Rauber and Gudula Runger. 2013. Parallel
Programming for Multicore and Cluster Systems. Springer.
pp. 9-14. ISBN 978-3-642-43806-6

[46] Thomas Rauber and Gudula Runger. 2013. Parallel
Programming for Multicore and Cluster Systems. Springer.
pp. 154-155. ISBN 978-3-642-43806-6

[47] Thomas Rauber and Gudula Runger. 2013. Parallel
Programming for Multicore and Cluster Systems. Springer.
p. 157. ISBN 978-3-642-43806-

[48] David Rotman. February 2020. We’re not prepared for the
end of Moore’s Law. MIT Technology Review.
https://www.technologyreview.com/2020/02/24/905789/were
-not-prepared-for-the-end-of-moores-law/

[49] SiPanda RISC-V Parser Instructions (not yet published)

[50] Size of programming language communities worldwide as of
2022. statista.
https://www.statista.com/statistics/1241923/worldwide-
software-developer-programming-language-communities/

[51] W. Richard Stevens and Gary R. Wright. 2017. TCP/IP
Illustrated. Vol. 1, The protocols. Addison-Wesley. Chapter
22. ISBN 978-0-13-476013-1

[52] Andrew S. Tanenbaum and Herbert Bos. 2014. Modern
Operating Systems (4th ed.). Pearson. p. 153.
ISBN-13: 978-0-13-359162-0

[53] Andrew S. Tanenbaum and Herbert Bos. 2014. Modern
Operating Systems (4th ed.). Pearson. p. 28.
ISBN-13: 978-0-13-359162-0

[54] Andrew S. Tanenbaum and Herbert Bos. 2014. Modern
Operating Systems (4th ed.). Pearson. pp. 171-172.
ISBN-13: 978-0-13-359162-0

[55] James T. Townsend. July 1990. Serial vs. Parallel
Processing: Sometimes They Look Like Tweedledum and
Tweedledee but They Can (and Should) Be Distinguished. In
Psychological Science. Volume 1 No. 1. pp. 46-54. DOI
10.1111/j.1467-9280.1990.tb00067.x

[56] USPTO, Parallelism in Serial Pipeline Processing. Patent
pending

[57] A. Toonk. March 2020, Linux Kernel and Measuring
network throughput. https://atoonk.medium.com/linux-
kernel-and-measuring-network-throughput-547c3b68c4d2

[58] A. M. Turing. July 1948. Intelligent Machinery (Report).
National Physical Laboratory. pp. 3-4.
https://weightagnostic.github.io/papers/turing1948.pdf

[59] A. Viviano. 2023. Introduction to Receive Side Scaling.
Microsoft. https://learn.microsoft.com/en-us/windows-
hardware/drivers/network/introduction-to-receive-side-
scaling

14

https://learn.microsoft.com/en-us/windows-hardware/drivers/network/introduction-to-receive-side-scaling
https://learn.microsoft.com/en-us/windows-hardware/drivers/network/introduction-to-receive-side-scaling
https://learn.microsoft.com/en-us/windows-hardware/drivers/network/introduction-to-receive-side-scaling
https://www.abebooks.com/9780134760131/TCPIP-Illustrated-Volume-Implementation-Addison-Wesley-0134760131/plp?cm_sp=plped-_-1-_-isbn
https://archive.org/details/tcpipillustrated00stev
https://archive.org/details/tcpipillustrated00stev
https://www.technologyreview.com/2020/02/24/905789/were-not-prepared-for-the-end-of-moores-law/
https://www.technologyreview.com/2020/02/24/905789/were-not-prepared-for-the-end-of-moores-law/
https://www.opensourceforu.com/2017/02/docker-favourite-devops-world/
https://www.opensourceforu.com/2017/02/docker-favourite-devops-world/
https://doi.org/10.1109%2FJRPROC.1961.287814
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1364r0.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1364r0.pdf
https://medium.com/@durganshu/the-power-of-parallel-programming-why-its-a-necessity-2429e4622f5e
https://medium.com/@durganshu/the-power-of-parallel-programming-why-its-a-necessity-2429e4622f5e
https://www.kernel.org/doc/ols/2002/ols2002-pages-330-337.pdf
https://www.kernel.org/doc/ols/2002/ols2002-pages-330-337.pdf
https://www.comm.utoronto.ca/~jorg/archive/papers/iwqos99-conserv.pdf
https://www.comm.utoronto.ca/~jorg/archive/papers/iwqos99-conserv.pdf

[60] Michael Wolfe. 1996. Parallelizing Compilers. Oregon
Graduate Institute.
https://dl.acm.org/doi/pdf/10.1145/234313.234417#:~:text=A
%20%E2%80%9Cparallelizing%20compiler%E2%80%9D
%20is%20typically,array%20assignments%20or%20parallel
%20loops.

[61] Xilinx. 2018. Alveo U200 and U250 Data Center Accelerator
Cards Data Sheet.
https://www.avnet.com/opasdata/d120001/medias/docus/190/
XLX-A-U200-P64G-PQ-G-Datasheet.pdf

[62] J. Ziv and A. Lempel. 1978. Compression of individual
sequences via variable-rate coding. In IEEE Transactions on
Information Theory. Volume 24 Issue 5. pp 530-536. DOI
10.1109/TIT.1978.1055934.
https://paginas.fe.up.pt/~sam/TI/artigos/ziv78compression.pd
f

15

https://web.archive.org/web/20120412115357/http://www.cs.duke.edu/courses/spring03/cps296.5/papers/ziv_lempel_1978_variable-rate.pdf
https://web.archive.org/web/20120412115357/http://www.cs.duke.edu/courses/spring03/cps296.5/papers/ziv_lempel_1978_variable-rate.pdf

	1. INTRODUCTION
	2. MULTI-QUEUE
	2.1 Multi-queue workload imbalances
	2.2 Multi-queue Single Flow Bottleneck

	3. FOUNDATIONS OF PARALLELISM
	3.1 Horizontal parallelism
	3.2 Vertical parallelism
	3.3 Constrained Vertical Parallelism
	3.4 Hybrid parallelism

	4. THREADING
	4.1 Threads
	4.2 Thread sets
	4.3 Datapaths
	4.4 Worker thread scheduling
	4.4.1 Top function scheduling
	4.4.2 Cascade scheduling
	4.4.3 Hybrid scheduling
	Top function scheduling and cascade scheduling can be used in tandem in hybrid scheduling. In hybrid scheduling, the top function schedules some number of threads via top function scheduling. The last thread started by the top function may schedule the next thread to initiate a cascade. In hybrid scheduling, cascade scheduling may commence only after the top function has scheduled all its threads

	4.5 Closed thread sets

	5. SYNCHRONIZATION
	5.1 Wait and resolve points
	5.2 Dependency resolution signals
	5.3 Watchers, blockers, and waiters
	5.4 Inter thread set dependencies
	5.5 Dependency channels
	5.6 Channel dependencies

	6. SERIAL DATA PROCESSING UNIT
	6.1 Implementation
	6.2 SDPU Performance
	6.2.1 Reference program for performance analysis
	6.2.2 Worker CPU Performance
	6.2.3 Parser CPU Performance
	6.2.4 Throughput analysis
	6.2.5 Latency analysis

	7. THE SINGLE FLOW BOTTLENECK
	7.1 General strategy
	7.2 Solving SFB in packet forwarding
	7.3 Solving the SFB in TCP

	8. DISCUSSION & OPPORTUNITIES
	REFERENCES

