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ABSTRACT
Network processing is inherently a form of serialized data
processing  where  packets,  as  well  as  protocol  layers  in
packets,  must  be  processed  in  sequential  order  without
overlap.  The ever increasing demands for low latency and
high throughput motivate the pursuit of higher performance
in network processing. While parallelism is a well known
technique in computing for high performance, parallelizing
network processing with granularity has been challenging.
In this  paper,  we present  a  novel solution that  reaps  the
maximum benefits  of  parallelism  in  network  processing.
We  first  provide  a  theoretical  foundation  that  defines
horizontal and vertical parallelism as the fundamental types
of parallelism in network processing. We then describe a
threading and synchronization model designed around the
characteristics of parallelizing serial data processing. Given
this  foundation,  we  describe  the  Serial  Data  Processing
Unit,  a domain specific  architecture  for  fine grained and
easily  programmable  parallelism  in  network  processing.
Lastly,  we describe  the Single Flow Bottleneck and how
the techniques  outlined in  this  paper  can address  it.  The
benefits  of  our  solution  are  higher  throughput,  lower
latency, and better resource utilization.
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1. INTRODUCTION
In this paper we introduce a foundation and architecture for
parallelism in network processing1. Network processing is
inherently a form of serial data processing, hence our goal
is  to  “find”  parallelism  in  serial  data  processing  [55].
Heretofore, this has proven to be a challenging endeavor. 

State  of  the  art  of  parallelism  in  network  processing  is
multi-queue. While multi-queue has served us well over the
years,  its  limitations and edge conditions are a mismatch
for the demands for higher performance. This is especially
true as we’re reaching the end of Moore’s Law [34,48] and
we can no longer rely on increases in CPU speed to keep
pace  with  increases  in  network  bandwidth.  More
parallelism is one answer to the end of Moore’s Law [33].

Our  architecture  exploits  key  attributes  of  serial  data
processing  to  elicit  fine  grained  parallelism  in  network
processing.  This is  based on the observation that  per  the
semantics of serial  data processing, the externally visible
output  of  network  processing  must  correspond  to  both
packets and their protocol layers having been processed in
order.  We  implement  an  internal  parallelism  in  network
processing that properly maintains the effects of serial data
processing.  In  concert  with  other  techniques,  including
hardware  accelerators,  memory  optimizations,  and  ISA
extensions; parallelism can greatly improve performance in
latency, throughput, and resource utilization.

This is a “Systems Paper” focused on scaling networking
performance of data center servers for processing very high
packet rates (up to one billion packets per second). In our
performance  analysis,  we  assume  that  server  CPU
processing  is  the  primary  bottleneck  for  processing  high
packet  rates,  and  that  the  network  and  other  system
resources  can  be  sufficiently  provisioned  to  avoid  being
bottlenecks.

This paper is organized as follows. First we describe multi-
queue and its problems. Then, we provide the theoretical
foundation for parallelism in network processing, and we
describe our threading and synchronization model. We then
present the Serial Data Processing Unit, a domain specific
architecture [22] for network processing. Next, we describe
the  Single  Flow  Bottleneck and  demonstrate  how  the
techniques of this paper can be applied to address it. We
conclude with discussion and opportunities.

1 Original inventions in this paper are covered by US patent 
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2. MULTI-QUEUE
Multi-queue parallelism, or multi-queue [12], is commonly
supported  in  host  networking  implementations.  Multi-
queue steers received packets to different queues, and each
queue is processed by a CPU thread where the threads can
run in parallel2.  The in-order processing requirements are
relaxed  so  that  only  packets  for  the  same  flow must  be
processed in order. Packets are steered to queues based on a
classification algorithm, such as a hash over the transport
layer 4-tuple, that associates packets with their flows. This
creates  affinity  between flows and threads  to  ensure  that
packets  in  a  flow  are  processed  in  order,  but  it  also
promotes  cache  locality  of  flow  related  data  structures.
Figure 1 illustrates multi-queue.
Multi-queue is an opportunistic optimization. Under ideal
conditions,  there  is  a  mix  of  packets  in  many  different
flows  such  that  the  load  across  receive  queues  has  a
uniform distribution  (Figure  2(a));  we  call  this idealized
parallelism and  an  arbitrarily  high  throughput  can  be
achieved given enough queues and threads. Under less than
perfect  conditions,  multi-queue  has  two  fundamental
problems: 1) workload imbalances, and 2) the Single Flow
Bottleneck. The performance effects of these problems are
shown in Figure 3.

2.1 Multi-queue workload imbalances
Multi-queue  is  susceptible  to  workload  imbalances.  The
workload across receive queues can be nonuniform when
there is a relatively small number of active flows3. This is
due to variance of distribution for the hash function which
is only asymptotic to a uniform distribution.
A proposed mitigation to the workload imbalance problem
is to steer packets for flows to queues by round robin; for
example,  packets of the first  flow are steered to the first
queue, packets of the second flow are steered to the second
queue, and so on.  This produces a uniform distribution for
good  performance, however steering  packets  by  round
robin requires state that maps flows to queues, so it is less
practical to implement than hash steering which is stateless. 2.2 Multi-queue Single Flow Bottleneck

If the number of active flows is less than the number of
queues,  then  an  imbalanced  workload  is  inevitable  with
multi-queue even with round robin steering. For instance, if
there are eight queues and only four flows, all packets for
those four flows are processed by at most four CPUs which
limits throughput. In the worst case, there is only one active
flow so that all packets are processed by one CPU with no
parallelism (Figure 2(b)). We call this problem the  Single
Flow Bottleneck. Section 7 describes the problem in detail
and  presents  a  solution  based  on  the  techniques  and
architecture described in this paper.

2 There are software and hardware variants of multi-queue [25]. Receive Side Scaling (RSS) [59] is a hardware technique commonly
implemented in NICs (Network Interface Cards) that steers packets to different hardware queues based on a hash of the flow tuple in
packets. Receive Packet Steering (RPS) emulates RSS in software. Receive Flow Steering (RFS) is an extension of RPS that steers
packets to CPUs where the associated flow is being processed. Accelerated RFS (aRFS) implements a form of RFS in NIC hardware.

3 This problem has been exploited in a Denial of Service attack where an attacker saturates a queue with packets in an attempt to degrade
service for other flows mapped to the same receive queue [13]. 
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Figure 3: Multi-queue performance. In this example, eight 
receive queues are used, and 125,000 packets per second can be 
processed by each queue for a maximum throughput of one 
million packets per second. The light blue line shows the 
performance of multi-queue when steering by hash, and the dark 
red line shows performance of multi-queue when steering with 
round robin. The dashed line indicates maximum throughput of 
one million packets per second which is attainable with horizontal
parallelism (Section 3.1). The performance gaps from workload 
imbalances and the Single Flow Bottleneck are highlighted.

Figure 1: Multi-queue parallelism. Packets are received on a 
network interface and are “steered to queues” based on their flow.

Figure 2: Best and worst case scenarios of multi-queue 
performance. (a) illustrates idealized parallelism in which all 
received packets are independent and can be processed in parallel.
(b) shows the worst case scenario in which all packets are for a 
single flow and are processed by one thread with no parallelism. 
Each block represents a packet, and the dotted line indicates line 
rate throughput. Tput gives the throughput for the scenarios.



3. FOUNDATIONS OF PARALLELISM
In this section, we provide the theoretical  foundation for
parallelism  in  network  processing,  and  describe  the  two
fundamental  types  of  parallelism  in  network  processing:
horizontal  parallelism  and  vertical  parallelism4.  Figure  4
illustrates these.

3.1 Horizontal parallelism
In horizontal parallelism, packets are processed in parallel
in  different  threads5.  Packets  are  steered  similarly  as  in
multi-queue but without flow to CPU affinity which avoids
workload imbalances. Synchronization (Section 4) is used
to  preserve  correct  ordering.  An  example  of  horizontal
parallelism is a network switch that  processes  packets  in
parallel but forwards them in order.
The minimal number of parallel threads required to handle
packet  processing  at  maximum  input  rate  in  horizontal
parallelism is given by Equation 16.

Equation 1: Minimal number of threads to sustain a given 
input rate in horizontal parallelism. tinput is the minimum time
between consecutive packets, where the inverse of tinput is the 
input rate. tpacket is the maximum time to process a packet.

The number and types  of  protocol  layers  in  packets  can
vary,  so the  total  time to process  a  packet  in  horizontal
parallelism is  the  sum of times to  process  each  protocol
layer of the packet. This is given by Equation 2.

Equation 2: Maximum time to process a packet in horizontal
parallelism. t(i)layer is the maximum time to process the i’th 
protocol layer in a packet. 

The time to process one protocol layer of a packet in a CPU
is a function of the number of instructions, Instructions Per
Cycle (IPC), and CPU clock frequency7 [21]. This function
is given in Equation 3.

Multi-queue is essentially a constrained form of horizontal
parallelism. The primary difference between the two is that
horizontal parallelism steers packets without regard to their
flow; this allows packets to be “randomly sprayed” across
threads which guarantees  a uniform distribution and high
throughput regardless  of the number of flows (Figure 3).
Horizontal  parallelism  doesn’t  establish  flow  to  CPU
affinity, so it doesn't promote cache locality of flow related
data  structures  as  multi-queue  does.  Section  7  discusses
mitigations for the loss of cache locality. 

3.2 Vertical parallelism
In  vertical parallelism,  protocol layers of a single packet
are  processed  in  parallel  in  different  threads8.  Per  the
requirements of serial data processing, the protocol layers
must be processed in order. Synchronization, described in
Section 4, is used to preserve correct ordering. An example
of vertical parallelism is a server that processes TCP/IPv6
packets where each of the Ethernet, IPv6, and TCP headers
are processed in parallel in different threads. The primary
benefit of vertical parallelism is reduced per packet latency.
In vertical  parallelism, the total  time to process  a  packet
equals the maximum time to process any of the constituent
protocol layers. This is given by Equation 4.

Equation 4: Maximum time to process a packet in vertical 
parallelism. t(i)layer is the maximum time to process the i’th 
protocol layer in a packet. 

4 The term “horizontal” is inspired by envisioning serial data as a continuous bit stream, like the memory tape of a Turing machine [58];
the term “vertical” is inspired by the typical vertical visualization of protocol stacks, like how the OSI model is visualized [38].

5 Architecturally, horizontal parallelism is a form of MIMD (Multiple Instructions, Multiple Data) parallelism [16].
6 In Equation 1, if tpacket is less than tinput then one thread is sufficient to handle the workload which is desirable in some use cases.
7 A clock cycle, or just cycle, is a discrete time event in a CPU that drives instruction execution. The CPU clock frequency is the number of

cycles per second. The number of instructions executed per clock cycle, or IPC, is dependent on the CPU architecture and workload [21].
We measured the IPC on x86 for network processing to be in the range of 1.4 to 1.8. For our purposes, we assume an average IPC of 1.4. 

8 Architecturally, vertical parallelism is a form of MISD (Multiple Instructions, Single Data) parallelism [16], where the “Single Data” is
one packet. It may be arguable if vertical parallelism corresponds to a strict definition of MISD as a processor architecture, however from
a system level view MISD seems to be the best classification and differentiates from horizontal parallelism which is clearly MIMD.
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Equation 3: Time to process one protocol layer of a packet
in a CPU. NumInslayer is the number of instructions executed 
for processing the protocol layer , IPC is the Instruction Per 
Cycle, and ClockFreq is the CPU clock frequency.

tlayer=(
NumInslayer

IPC
)×( 1

ClockFreq
)

t packet= ∑
i=all layers

t(i)layer

Figure 4: Horizontal and Vertical parallelism. The diagram 
illustrates an example for processing eight packets in both 
horizontal and vertical parallelism. Each packet is composed of 
some number of protocol layers (represented by the colored 
blocks). In this example, packets are input at constant intervals as 
indicated by the dotted vertical lines. In horizontal parallelism the 
packets are processed in parallel in four threads, and in vertical 
parallelism the individual protocol layers of each packet are 
processed in parallel using five threads. Each marked row in the 
diagram represents a thread.

t packet= max
i=alllayers

(t (i)layer)

numthreads=ceiling (
t packet

t input
)



3.3 Constrained Vertical Parallelism
If the number of protocol layers in a packet is greater than
the number of threads available for vertical parallelism then
that  is  constrained  vertical  parallelism.  In  constrained
vertical  parallelism,  if  no  threads  are  available  then  the
processing  for  a  protocol  layer  must  wait  until  one  is
available. A thread becomes available when processing for
another  protocol  layer  completes.  In  this  architecture,
packet processing is work conserving [29], so that there is
always at  least  one  thread  running  and  guaranteed  to
complete.  Figure  5  demonstrates  an  example  processing
flow with constrained vertical parallelism. 
For constrained vertical parallelism, the time to process a
packet is given by Equation 5.

Equation 5: Maximum time to process a packet in constrained
vertical parallelism. t(i)layer is the maximum time to process the 
i’th protocol layer, numthreads indicates the number of threads 
available for vertical parallelism, and numlayers indicates the 
number of protocol layers in a packet. Note that if numthreads >=
numlayers then the equation is equivalent to Equation 4 for 
vertical parallelism, and if numthreads is one then the equation 
degenerates to Equation 2 with no vertical parallelism.

3.4 Hybrid parallelism
To achieve high throughput and low latency, a combination
of vertical  parallelism and horizontal  parallelism may be
employed in  hybrid parallelism. Figure 5 demonstrates an
example processing flow using hybrid parallelism.
Per Equation 1, hybrid parallelism becomes effective when
the  packet  processing  time  is  greater  than  inter  packet
arrival time  and is especially beneficial for high throughput
cases,  such  as  a  high  speed  network  switch,  where  per
packet processing time is much greater, possibly by one or
two  orders  of  magnitude,  than  inter  packet  arrival  time
Vertical parallelism bounds the latency to process a single
packet  which  minimizes  packet  processing  time  and  the
number of horizontal threads needed.

4. THREADING
This section describes the threading and scheduling model
for horizontal and vertical parallelism. The elements of this
model  are  threads,  thread  sets,  and  datapaths;  these  are
illustrated in Figure 6.

4.1 Threads
A thread is the smallest set of programmed instructions that
can be independently scheduled to execute in a CPU [44].
Threads are supported by the underlying operating system
to provide thread level parallelism9 [45]. Threads are run to
completion [52] and should have minimal context switch
overhead [53] to support vertical parallelism.
A  number  of  OS  level  threads  are  created  to  perform
network  processing.  Each  thread  runs an  event  loop that
polls a work queue for new work to be performed. A queue
contains work items, each of which describes a unit of work
being requested.  A work  item includes  all  the  necessary
information for processing a layer including a reference to
the packet being processed,  the specific function that the
thread  should  perform,  and  other  contextual  information
needed for processing. When work becomes available to a
thread,  meaning  there  is  an  item  in  the  work  queue,  it
dequeues  the  first  item  in  the  queue  and  performs  the
requested  processing  by  calling  the  indicated  function.
When the processing function returns,  the thread  is  done
and the event loop is re-initialized to process the next work
item. A thread will block while waiting on a dependency to
be  resolved  (Section  5)  or  waiting  for  an  accelerator  to
complete. While a thread is blocked, another thread can be
scheduled to run on the CPU. 

4.2 Thread sets
Threads are grouped together into thread sets. A thread set
defines one instance of packet processing, and thread sets
can process packets in parallel in horizontal parallelism. A
thread set contains a number of worker threads that process
protocol  layers  of  packets  in vertical  parallelism. At any
given  time,  a  worker  thread  is  either  available  (not
running), or busy (running and processing a protocol layer).
The set of running threads in a thread set are well ordered
and maintained by the thread set in an  ordered list.  The
ordered  list determines  the  downstream  and  upstream
relationships of threads needed for dependency resolution
(Section 5). When a thread set is started, it is added to the
tail  of  the  ordered  list;  and  when  a  thread  terminates
(becomes “done”), it is removed from the ordered list.
Threads may kill downstream threads if a condition renders
work of the downstream threads irrelevant. For instance, if
IPv4 header checksum validation fails when processing an
IP header then the packet will be dropped and processing of
the  TCP  header  is  no  longer  relevant,  so  the  IP  layer
processing thread can kill the TCP processing thread along
with any downstream threads of the TCP processing thread.

9 POSIX Threads (pthreads) [32] provides this functionality. To reduce overhead, we are investigating the use of fibers [36]. In the SDPU,
hardware threads are used and are managed by a hardware CPU scheduler for very low overhead.
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Figure 5: Hybrid and constrained vertical parallelism. The 
diagram illustrates an example for processing the same eight 
packets in Figure 4 in hybrid parallelism with constrained vertical 
parallelism. Two packets can be processed in horizontal 
parallelism, and two protocol layers of each packet can be 
processed in parallel in vertical parallelism. If a packet has more 
than two protocol layers then processing has to wait for an 
available thread. For instance, in packet #2, processing for the red 
protocol layer waits until the orange layer processing completes.

t packet=ceiling ( numlayers
numthreads

)×max
all layers

(t( i)layer)



4.3 Datapaths
A  datapath  is  an  instance  of  a  network  processing  data
path, and consists of a number of thread sets. Thread sets of
a  datapath  can  process  packets  in  parallel  in  horizontal
parallelism. Thread sets are well ordered and maintained in
an ordered list. The ordered list determines the downstream
and upstream relationships of thread sets needed for inter
thread  set  dependency  resolution  (Section  5.4).  When  a
thread set is started it is added to the tail of the ordered list;
and when  all the threads in a thread set are done then the
thread set is done and it is removed from the ordered list.
4.4 Worker thread scheduling
Worker threads are scheduled by top function scheduling or
cascade  scheduling.  These  can  be  combined  in  hybrid
scheduling. Figure 7 illustrates these methods.

4.4.1 Top function scheduling
In  top  function  scheduling,  each  thread  set  runs  a  top
function to  schedule  worker  threads.  Typically,  the  top
function invokes a parser  [17] to  identify the constituent
protocol  layers  of  packets  and  then  schedules  threads  to
process the layers.  For each identified protocol layer,  the
top function may schedule a worker thread by queuing a
work item on the work queue of an available worker thread.
Parsing  may  be  tightly  integrated  with  scheduling  as
parser-scheduling,  and the top function is then a parser-
scheduler. 

4.4.2 Cascade scheduling
In cascade scheduling, the last worker thread in the ordered
list can schedule the next thread in a thread set. When the
first thread runs it can schedule a second worker thread, the
second thread may in turn schedule a third worker thread,
and so on. The cascade of scheduling threads stops when a
last  worker  thread  doesn’t  schedule  a  next  thread.  In
cascading  scheduling,  only  the  last  thread  in  the  thread
set’s order list may schedule a next thread.

4.4.3 Hybrid scheduling
Top  function  scheduling  and  cascade  scheduling  can  be
used in tandem in hybrid scheduling. In hybrid scheduling,
the top function schedules some number of threads via top
function  scheduling.  The  last  thread  started  by  the  top
function may schedule the next thread to initiate a cascade.
In hybrid scheduling,  cascade scheduling may commence
only after the top function has scheduled all its threads
4.5 Closed thread sets
Once  the  last  and  final  thread  has  been  scheduled  in  a
thread set, the thread set is closed. When a thread set is in
closed state,  no additional  worker  threads  can be started
and no more threads are added to the ordered list. Closing a
thread  set  initiates  propagation  of  resolved  dependencies
between threads sets as described in Section 5.4.

5. SYNCHRONIZATION
Synchronization [19,46] is  the coordination of concurrent
threads of execution to ensure that they don’t interfere with
each other or access shared resources in an inconsistent or
unsafe way. For instance, when two threads are processing
received packets for the same TCP connection in horizontal
parallelism, updates to the Protocol Control Block (PCB)
[51] must be synchronized to ensure correctness. Similarly,
if the IP and TCP protocol layers of a TCP/IP packet are
processed  in  parallel,  TCP  processing  cannot  update  the
PCB until the IP processing completes and has verified the
packet is correct. Historically, locks or mutexes [18] have
been used for synchronization; however,  in this paper we
introduce  a novel  mechanism called  dependencies that  is
specifically  designed  for  synchronization  in  serial  data
processing.  The  key  design  point  is  that  one  thread  can
have a dependency on processing in another thread .
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Figure 6: Threads, thread sets, and datapaths. This example 
shows a datapath with three thread sets processing packets. 
Threads within each thread set are scheduled to process protocol 
layers of the packet being processed by the thread set. Note that 
thread sets are in the ordered list of the datapath, and threads are 
in the ordered list of their thread set.

Figure 7: Example of hybrid scheduling with top-function 
(parser-scheduling) and cascade scheduling. In this example, 
hybrid scheduling is used to schedule worker threads to process a 
TCP in IPv4 in IPsec in IPv6 in Ethernet packet; IPsec encrypts 
the encapsulated IPv4 packet. When a packet is input, the parser-
scheduler parses the Ethernet, IPv6, and IPsec headers (those in 
plain text), and schedules worker threads to process them as 
indicated by the solid green arrows from the top function. IPsec 
processing decrypts the encapsulated IPv4 packet and schedules a 
thread to process the IPv4 header in cascade scheduling. The IPv4
thread then schedules a thread to process the TCP header. Cascade
scheduling is indicated by the dashed red arrows.



A thread with a dependency cannot proceed to execute in
the critical  region corresponding to the dependency until
the  thread  it  depends  on  resolves the  dependency.
Dependencies are strictly unidirectional so that a thread can
have a dependency on an upstream thread, but not the other
way around. This unidirectional property ensures that there
are no circular dependencies, and hence deadlock [47] with
dependencies is not possible.

5.1 Wait and resolve points
Dependency synchronization is expressed as resolve points
and wait points. A resolve point is a point in the code path
of a thread at which processing has been done to satisfy a
dependency in downstream threads. A wait point is a point
in  the  code  path  of  a  thread  at  which  execution  cannot
proceed  until  the  dependency  has  been  resolved  by
upstream threads.  Wait and  resolve primitives are defined
in an API to synchronize between wait and resolve points.

As  an  example,  consider  a  dependency  between  threads
processing the TCP and IP layers  of  a packet.  The TCP
thread  can  perform  basic  validation  of  the  TCP  header,
such  as  checksum  validation,  in  parallel  with  IP  layer
processing.  However,  the  TCP  thread  cannot  commit
changes to the TCP PCB before the IP thread has validated
the IP header. An “IP layer accepted packet” dependency
may be employed with a wait point in the TCP layer code
path before updating the PCB, and a resolve point in the IP
layer code path after the packet is validated.

5.2 Dependency resolution signals
When a thread resolves a dependency, downstream threads
in the thread set are informed of the dependency resolution
and  execution  can  proceed  through  wait  points  for  the
dependency.  This  is  done  by  propagating  a  resolution
signal  to  downstream  threads10.  A  resolution  signal
propagates until one of the following conditions are met:

1. The end of  the ordered  list  for  the thread  set  is
reached.

2. A thread is encountered that blocks, that is it must
resolve, the same dependency being resolved.

3. A thread is encountered that has already resolved
the same dependency.

Figure 8 shows an example of dependency resolution.

5.3 Watchers, blockers, and waiters
With respect to a dependency, a thread may be a watcher,
blocker, or waiter. A dependency watcher is a thread that is
interested  in  a  dependency  and  may  wait  on  it.  A
dependency  waiter is  a  thread  actively  waiting  on  a
dependency to be resolved; while it’s waiting the thread is
blocked  and  cannot  proceed  until  the  dependency  is
resolved. A  dependency blocker is a thread that blocks a
dependency; the thread must resolve the dependency before
the resolution signal is propagated to downstream threads.
When  a  thread  starts,  the  dependencies  that  the  thread
blocks are declared and the thread set maintains a list of
blockers for each dependency. When a thread terminates,
any  unresolved  blocked  dependencies  are  automatically
resolved. A thread may be a blocker, watcher and waiter of
the same dependency. Figure 9 illustrates the operation of
watchers, blockers, and waiters.

5.4 Inter thread set dependencies
Dependency resolution may be propagated from one thread
set to another in the ordered list of thread sets of a datapath.
Dependencies that can be propagated between thread sets
are called propagated dependencies and are declared in the
configuration of a datapath. Propagated dependencies must
be a subset of all the dependencies defined for a datapath,
and a dependency is either propagated or non-propagated.
With regards to dependency resolution amongst threads in a
thread  set,  propagated  dependencies  are  indistinguishable
from non-propagated dependencies.

10 In an OS, the resolution signal could be implemented using a condition variable [2].
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Figure 8: Example of dependency resolution. The columns, 
labeled Thread 1 to Thread 4, refer to four threads in a thread set. 
The rows of the diagram, labeled A to E, provide points in the 
timeline for discussion. There are two dependencies: the “circle 
dependency” and the “diamond dependency”.
Line A shows the state of dependencies before execution 
commences. Line B shows the initial execution allowed in the 
four stages-- green areas represent portions of the code path that 
have no dependencies and can run in parallel from the start. In 
Line C, Thread 1 resolves the circle dependency-- at this point the 
blue section in Thread 2 can now run. In Line D, Thread 2 
resolves the second instance of the circle dependency-- at this 
point the blue section in Thread 4 can run; although the circle 
dependency is now resolved for Thread 3, it cannot proceed since 
it is still waiting on the diamond dependency. Finally, in Line E 
Thread 2 resolves the diamond dependency so that the red 
portions of Thread 3 and Thread 4 can now run.



Propagated dependencies that have been resolved and are
not blocked by the last thread of a closed thread set may be
resolved in the next thread set in the datapath’s ordered list.
Resolving a dependency in the next thread set is done by
propagating a dependency resolution signal  starting from
the first thread in the next thread set.
If  a  dependency  resolution is  propagated  between  thread
sets and the resolution signal reaches the last thread in the
following thread set which is also closed and doesn’t block
the  dependency,  then  the  dependency  resolution  may be
further propagated to the “next next” thread set.

5.5 Dependency channels
In-order processing requirements may be relaxed such that
packets in the same flow are processed in order, but packets
in different  flows have no processing order  requirements
(similar to multi-queue). Thread sets processing packets of
the  same  flow  are  grouped  together  in  a  dependency
channel. Each dependency channel contains an ordered list
of thread sets, and in-order processing is maintained within
the channel.  A datapath maintains a table of  dependency
channels. Figure 10 illustrates dependency channels.

A  thread  set  joins  a  dependency  channel  via  a  “join
channel” operation. A thread set is joined to a channel by
adding it to the tail of the ordered list of thread sets for the
channel. Once joined to a dependency channel, a thread set

is joined for its remaining lifetime processing a packet. To
avoid deadlock,  the relative ordering of  thread sets  in a
dependency  channel  must  be  the  same  as  that  in  the
ordered list of the datapath. When a thread set is done and
is joined to a dependency channel, it is removed from the
ordered list of the dependency channel.
When a thread set starts, it is not automatically joined to a
channel.  Some  processing  is  needed  on  the  packet  to
determine its flow, and hence which channel to join11.  A
thread set is not required to join a channel, as might be the
case of a packet with no associated flow.

5.6 Channel dependencies
A set of channel dependencies is used for synchronization
amongst the thread sets of a channel. Channel dependencies
are declared in datapath configuration and are a subset of
propagated  dependencies  for  a  datapath.  A  propagated
dependency is  either  a  “channel  dependency” or  a  “non-
channel dependency”. 
Channel dependencies that have been resolved and are not
blocked by the  last  thread  in  a  closed thread  set  can  be
propagated to the next thread set in the ordered list of the
dependency  channel  to  which  the  thread  set  joined.  The
channel  dependencies  are  used  across  all  channels  in  a
datapath, but they are only propagated amongst thread sets
of the same channel and so are effectively independent sets
of  dependencies.  Channel  dependencies  are  propagated
between thread sets of a dependency channel following the
rules  for  inter  thread  set  dependencies  as  described  in
Section 5.4.

11 Typically, the identifying flow tuple in packets is hashed to determine a flow. For instance, for a TCP/IP packet a hash might be 
computed over the TCP 4-tuple which includes the IP addresses and TCP port numbers. Commonly used hash functions are Jenkins [27], 
Toeplitz [28], and SipHash [5].
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Figure 9: Example of dependency watchers, blockers, and 
waiters: The diagram shows the list of blocker and watcher 
threads for a dependency. Once a blocker has resolved a 
dependency, it is removed from the list of blockers for the 
dependency. A watcher becomes a waiter when it is actively 
waiting on a dependency (waiters are not shown). The rows, 
labeled A to D, provide points in the timeline for discussion.
In the initial state, Line A, there are three blockers and three 
watchers: Thread 10 and Thread 17 are blockers but not watchers, 
Thread 13 and Thread 19 are watchers but not blockers, and 
Thread 12 is both a watcher and a blocker. In Line B, Thread 17 
resolves the dependency. The resolution signal is propagated to 
Thread 19 and then stops since the end of the ordered list is 
reached. Note that Thread 17 is not a watcher so that it is 
effectively creating a new independent instance of the dependency
In Line C, Thread 10 resolves the dependency. The resolution 
signal is propagated to Thread 12, but stops since Thread 12 is a 
blocker. Subsequently in Line D, Thread 12 resolves the 
dependency. The resolution signal is propagated to Threads 13 
and 17, but stops there since the dependency is already resolved 
for  Thread 19.

Figure 10: Example of channel dependencies. Dependency 
channels are organized in a hash table, where each element 
contains an ordered list of thread sets joined to a channel. When a 
packet is received it is joined to a channel by hashing over the 
identifying 4-tuple of the packet, using the result to index the hash
table, and then adding the thread set to the tail of the ordered list 
for the dependency channel. In the diagram, the thread sets for the
second channel are expanded to show their threads and 
dependency resolution propagation for a channel dependency.



6. SERIAL DATA PROCESSING UNIT
The  Serial Data Processing Unit,  or  SDPU,  is a domain
specific processor and architecture for fully programmable,
network processing and parallelism. The architecture of the
SDPU is shown in Figure 11. Figure 12 shows the flow of a
packet  through  the  SDPU and  the  relationships  between
components.
The SDPU consists of clusters of RISC-V [4] CPUs, where
each  cluster  contains some number of  worker  CPUs and
parser  CPUs.  Worker  CPUs provide hardware  threads  to
run the threads described in Section 4.1. Parser CPUs work
in  tandem  with  cluster  schedulers to  perform  parser-
scheduling  (Section  4.4.1)  of  threads  that  run  in worker
CPUs.  Worker and parser CPUs are user programmable.
Outside  of  the  CPU  clusters  are  the  dispatcher,  global
scheduler,  and  accelerators.  The  dispatcher dispatches
received  packets  to  clusters  to  be  processed.  The  global
scheduler maintains  the  ordered  list  of  thread  sets  and
dependency  channels  for  a  datapath.  Accelerators
accelerate  functions  on  behalf  of  worker  CPUs.  These
components  are  generally  not  user  programmable  and
implement the “uncore” functions in the SDPU. 

6.1 Implementation
We implemented a Proof of Concept (PoC) of the SDPU in
a software emulator and in FPGA.
The  software  emulator  runs  on  a  Linux  RISC-V  virtual
machine (VM) in either Docker [43] or QEMU [1].  The
emulator is a fully functional implementation of the SDPU,
and is provided as a library to be linked with test programs.
The emulator is configurable to allow quick evaluation of
different configurations for the numbers of clusters, worker
CPUs, parser CPUs, and accelerators. It also allows us to
extrapolate performance of hardware implementation.
For the FPGA implementation we run ten RISC-V CPUs in
a Xilinx U200 FPGA [61]. One cluster is created with two
worker CPUs and a parser CPU. The rest of the CPUs are
dedicated  to  emulating  the  uncore  components  of  the
SDPU12. We also implemented some accelerators in RTL13.
Communication amongst components is message based and
uses  hardware  FIFOs for  high performance14.  The FPGA
implementation allows us to test with native RISC-V CPUs
and to develop uncore components in RTL [8].
Users write applications for their data path in the PANDA
programming model [39]. A program includes the code for
parser CPUs and worker CPUs. We modified the LLVM
compiler [31] to optimize compilation for the SDPU CPUs,
including  emitting  domain  specific  custom  instructions
supported in parser and worker RISC-V CPUs.

6.2 SDPU Performance
The  SDPU  is  designed  to  maximize  throughput  and
minimize latency. Throughput can be measured by packets
processed  per  second  (pps).  Latency  is  measured  as  the
time from when a packet starts to be processed to the time
that processing completes. Tail latency is a key metric [14],
so we consider the 99.9th percentile of tail latency.
Parallelism is an important technique for high throughput,
and is employed in the SDPU at multiple levels. The major
components operate in parallel  as a pipeline.  Thread sets
are instantiated in clusters for horizontal  parallelism, and
worker threads run in worker CPUs for vertical parallelism.
A cluster may have multiple parser CPUs that can run in
parallel.  Accelerators  can  run  in  parallel  with  CPU
processing  and  other  accelerators,  and  they  may  also
employ internal parallelism.
Latency is a function of the amount of serialized execution
in processing a  packet,  so we use  vertical  parallelism to
reduce the time spent in serialized processing. Tail latency
correlates to variances in the processing path. Variance is
minimized in the SDPU by deterministic processing-- no
OS, no interrupts, no cache misses, no exceptions, etc.
In this section, we analyze performance of workloads that
exhibit idealized parallelism where latency and throughput
are independent; we use a TCP SYN cookies program as a
reference application. In Section 7 we consider workloads
where processing latency correlates with throughput.

12 The final design goal is for all the uncore components in the SDPU to run in RTL. Worker and parser CPUs are intended to run as bare
metal CPUs without an OS and with a hardware CPU scheduler that orchestrates processing threads. 

13 To date, we implemented SipHash [5], CRC [40], Murmur3 hash [3], and LZF compression [62] as hardware accelerators in RTL.
14 Hardware FIFOs are lockless, and enqueue and dequeue operations are respectively done by a single memory store and load. 
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Figure 11: Annotated block diagram of the Serial Data 
Processing Unit (SDPU). The components of the SDPU include: 
(1) some number of CPU clusters, (2) each cluster has some 
number of enhanced RISC-V worker CPUs, (3) each cluster has at
least one RISC-V parser CPU, (4) a threading and synchronization
unit that includes the cluster schedulers and the global scheduler 
that manage scheduling and dependencies for horizontal and 
vertical parallelism, (5) a high performance interface to very fast 
memory (6), a high performance interconnect fabric to 
accelerators, (7) external accelerators (in ASIC, FPGA, etc.).



6.2.1 Reference program for performance analysis
To  evaluate  performance,  we  wrote  a  program  for  the
SDPU and Linux to generate TCP SYN cookies [11]. This
is a stateless application that receives TCP SYN packets,
and then parses and validates the Ethernet,  IPv4 headers,
TCP headers, and TCP options. If the validations succeed
for a SYN packet then the program creates a TCP SYN-
ACK packet with a SYN cookie. Table 1 shows the number
of assembly instructions for the two implementations.

6.2.2 Worker CPU Performance
Worker CPUs are optimized so that 99% of CPU cycles are
dedicated  to  executing  instructions  in  user  programs
without pipeline stalls. This is accomplished by:

• Eliminating infrastructure overhead (no OS)
• Accelerating complex functions like crypto
• Avoiding cache misses, prefetching as needed
• ISA extensions (e.g. checksum calculation15)
• Low latency thread context switch

With these optimizations there are no wasted CPU cycles
and processing is deterministic  so that  mean latency and
tail latency are minimized. Assuming idealized parallelism,
the number of CPUs needed to achieve a given throughput
is a straightforward calculation using Equation 1. 

Table 1: Number of instructions to generate TCP SYN 
cookies. This compares the number of instructions needed in 
Linux on x86 and in the SDPU to process the fields of a TCP-
SYN packet and generate a SYN cookie. Note the SDPU divides 
work between CPUs and parser CPUs as indicated by (parser).

Protocol Field Linux ins. count SDPU ins. count

EtherType with lookup > 50 10   2 (parser)

IP protocol, IHL with 
length validation

30 4 (parser)

Addresses and ports > 100 (mostly look 
           up cost)

10 (lookups are
     asynchronous)

IPv4 header checksum 20 2

IP flags, Ident, Frag Offset 10 10

TOS 15 15

TCP flags 30 2 (parser)

TCP checksum 40 (incl. pullup) 10

Other TCP fields 30 30

TCP options 40 40 4 (parser)

Syn cookie creation 50 50

Total >500 177  12 (parser)

15 Unlike x86 and ARM, RISC-V lacks processor flags so there is no add-with-carry instruction typically used to make Internet checksum
calculation efficient. We created “checksum add” and “checksum fold” RISC-V instructions that don’t require add-with-carry.
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Figure 12: SDPU processing flow. The steps for processing a packet are numbered 1 to 10. Communication between components is 
performed through message FIFOs. For efficiency, the SDPU operates on a parsing buffer containing the first N bytes of headers (parsing 
buffers are a common technique in high performance routers). Parser and worker CPUs run user written programs. 



6.2.3 Parser CPU Performance
To optimize parsing performance, we implemented a set of
parser  instructions  in  RISC-V  [49].  These  instructions
encompass the domain specific operations of parsing, and
can efficiently  parse a wide range of protocols including
some of the more “difficult” protocol constructs to parse
like Type Length Values (TLVs),  flag-fields like in GRE
[15], and protobufs [41] for gRPC16 [20].
Each parser instruction replaces five to three hundred CPU
integer  instructions  with  equivalent  functionality.  For
parsing  Internet  protocols,  we  expect  the  ratio  of  parser
instructions  to  equivalent  integer  CPU instructions  to  be
about 15:1. Parser instructions have a lower IPC which we
estimate to be about 0.4 on average. Assuming a CPU IPC
of  1.4 for  parsing  using integer  instructions,  the  relative
throughput speedup from parser instructions is 4.3.
Figure  13  compares  parsing  performance  between  the
SDPU parser  and  x86 for  different  protocols.  Figure  14
shows a detailed comparison for parsing the IPv4 header.

6.2.4 Throughput analysis
The components of the SDPU (Figure 12) run in parallel in
a  pipeline  so throughput  is  bounded  by  the  minimum
throughput of any component in the processing path. CPUs
are likely to  be the throughput  bottleneck  since  they are
programmable and the biggest performance variable (non-
programmable components can presumably be provisioned
with sufficient resources for a desired load).
Per  Table  1,  a  worker  CPU requires  177 instructions  to
process a TCP SYN packet. Assuming an IPC of 1.4, that
gives about 15.8 million pps on a single 2GHz CPU. So,
sixty-four worker CPUs are needed to sustain 1 billion pps
throughput.
Based on TCP SYN cookie processing in Table 1, twelve
parser instructions are needed to parse a TCP SYN packet.
Assuming an IPC of 0.4 for parser instructions that gives
66.6 million pps for a single 2GHz CPU. Hence, sixteen
parser CPUs are needed to sustain 1 billion pps throughput.

6.2.5 Latency analysis
Latency of a single packet through the SDPU is the sum of
latencies  of  each  of  the  inline  processing  components.
Referring to Figure 12, a packet is processed in sequence
by  the  dispatcher,  cluster  front  end,  parser,  and  cluster
scheduler.  The parser  is  user  programmable  and requires
serialized  processing  per  packet;  referring  to  Table  1,
twelve  parser  instructions  are  required  to  parse  a  SYN
packet and with an IPC of 0.4 that gives a latency of thirty
cycles. Extrapolating from the PoC and design, we expect a
maximum  latency  of  five  cycles  for  each  of  the  three
uncore components. We budget five cycles of latency for
the logic of sending and receiving packets. Summing these
up, our estimate for packet processing latency of the parser
and uncore components is fifty-five clock cycles.
We split processing for the SYN cookies program into five
protocol  layers:  Ethernet,  IPv4,  TCP,  TCP  options,  and
SYN cookie creation. We assume there are enough threads
for  unconstrained  vertical  parallelism,  so  per  packet
processing latency is the maximum of that of any protocol
layer (Equation 4). Per Table 2, the maximum processing
latency is the SYN cookie creation with thirty-six cycles.
Adding the numbers, the per packet latency of the SDPU,
assuming a 2GHz CPU and system clock, is about forty-
five nanoseconds. As we mentioned, the SDPU is designed
to  minimize  variance,  so  our  expectation  for  99.9th

percentile tail latency is fifty nanoseconds.
Table 2: Instruction counts and cycles for the SDPU for 
protocol layer processing for TCP SYN cookies program. The 
instruction counts for each protocol layer are derived from Table 
1. The number of cycles is calculated assuming an IPC of 1.4.

 Protocol layer Ins. count Number of cycles

Ethernet 10 8

IPv4 37 27

TCP 40 29

TCP options 40 29

SYN Cookie creation 50 36

16 In combination with integer instructions, parser instructions are Turing Complete [58] in that we can fall back to using plain integer
instructions. We do this for parsing nested protobufs [41] in gRPC [20].
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Figure 13: Parser performance. Test cases are IPv4, TCP with 
options, and a gRPC example with nested protobufs. For each 
case, the number of instructions and cycles are shown for an x86 
implementation using plain instructions, and an implementation in
RISC-V with SDPU parser instructions. Note that lower is better.

Figure 14: Parsing IPv4. The blue boxes show the C source code
and disassembly for an x86 implementation, the orange boxes 
show the C source code and disassembly for the SDPU parser.



7. THE SINGLE FLOW BOTTLENECK 
The benefits  of parallelism are  limited by the amount of
parallelism available to programs, and by the overheads for
orchestrating  parallelism  [23].  The  effects  in  networking
are  particularly  acute  since  networking  is  fundamentally
serial data processing.
The worst case scenario in network processing is when all
the packets  being processed  belong to a  single flow that
requires  processing  in  a  critical  region.  For  instance,
updating  a  TCP  PCB  is  a  critical  region that  must  be
serialized. If all packets being processed were for the same
TCP connection,  then  a  portion  of  processing  for  every
packet  is  serialized  with  respect  to  other  packets.  In  the
case  of  multi-queue,  this  serialization  is  facilitated  by
steering packets of the same flow to a single CPU, however
that results in no parallelism and maximum throughput is
the  reciprocal  of  the  time  it  takes  to  process  a  packet
(Figure 2(b)). In even a moderately high speed network, the
time to process a packet is typically much greater than inter
packet  arrival  time, hence throughput  drops precipitously
compared to idealized parallelism. We refer to this problem
as the Single Flow Bottleneck, or SFB.
Addressing the Single Flow Bottleneck is challenging, even
in hardware, since it’s impossible to eliminate the need for
serial  execution  in  all  workloads.  Our  strategy  is  to
minimize the time spent in critical regions and to minimize
the  overheads  of  parallelism.  Applying  this  strategy,  we
demonstrate  a  solution  that  addresses  the  Single  Flow
Bottleneck  for  two  use  cases:  1)  a  router  forwarding
packets [57], and 2) a high throughput TCP connection.

7.1 General strategy
In Figure 15(a), the solution to the Single Flow Bottleneck
using  horizontal  parallelism is  suggested.  The portion of
execution that must be serialized, for instance updating a
TCP PCB, is identified as a  critical region. Packets for a
flow are processed by thread sets in horizontal parallelism
and  critical  region  processing  is  serialized  and
synchronized  between  threads.  Processing  outside  the
critical  regions  can  be  done  in  parallel.  Throughput  is
bounded by the reciprocal  of  time processing the critical
region plus synchronization overhead.
In Figure 15(b), the benefits of splitting critical regions are
illustrated. Splitting critical regions is possible if there are
no dependencies  between the sub-regions.  Throughput  is
bounded by the reciprocal  of  time processing the largest
critical region plus synchronization overhead.
To minimize the time processing a critical region, its logic
may be implemented in an accelerator. Such an accelerator
could  implement  a  very  tight  event  loop  in  hardware  to
process requests quickly:
   while (1) {

if (!next_request)
   wait
dequeue & process critical region

   }

For highest throughput, an accelerator should parallelize as
much  processing  as  possible  outside  of  critical  regions.
This includes prefetching memory and staging requests for
critical region processing.
If access to the critical region needs to be well ordered then
an ordered accelerator can be used. An ordered accelerator
associates a dependency with the accelerator so that waiting
and resolving the dependency is handled transparently as
part of accelerator processing. This eliminates the need for
the program to use explicit wait and resolve primitives to
synchronize accelerator processing.

7.2 Solving SFB in packet forwarding
In packet forwarding there are two operations performed in
critical  region  processing:  next  hop  lookup  and  packet
transmission. Both of these can be implemented as ordered
accelerators. The pseudo code for invoking them is:
    next_hop = lookup_nexthop(dest_address)
   send_packet(packet, next_hop)

Next hop lookup is usually a Longest Prefix Match [10], or
LPM, lookup. The need for critical region processing arises
from a requirement that routing must be consistent during a
route change. The LPM lookup can be implemented as an
ordered  accelerator  that  is  associated with a  non-channel
dependency. Internally, the accelerator can use a readers-
writers lock [54] for the critical region, this allows route
lookups to be done in parallel.
Packet transmission can be modeled as an accelerator that
manages  transmit  queues  with  some  queuing  discipline.
The critical region processing is an enqueue operation that
can be efficiently implemented.
With optimized accelerator hardware, both the overhead of
parallelism and critical region processing for route lookup
and transmission accelerators can be minimized. Assuming
critical region latency plus overhead is two nanoseconds, a
2Ghz clock frequency, and applying the equation in Figure
15(b), a forwarding rate of 1 billion pps is achievable.
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Figure 15:  Addressing the single flow bottleneck.  (a) applies 
horizontal parallelism with critical regions to process packets of 
the same flow on multiple threads for increased throughput. (b) 
shows how splitting critical regions increases throughput. The 
dotted line indicates line rate throughput, and critical regions are 
in yellow and purple. Tput gives the maximum throughput



7.3 Solving the SFB in TCP
We demonstrate addressing Single Flow Bottleneck in the
TCP receive  path,  similar  techniques would apply to  the
send path. There are two operations in the critical region of
TCP receive processing: 1) reading and updating the PCB,
and 2) enqueuing received data to the socket buffer. These
operations are independent, so can we split them into two
critical regions. We implement the processing of these in
two accelerators:  “update PCB” and “socket buffer”.  The
“update PCB” accelerator will have the greater latency, so
we’ll focus on that one.
The “update PCB” accelerator  can implement a fast  path
for TCP Header Prediction [6]. The core pseudo code17 is:
    if ((tcp_flags & FMASK) ==
      tp→pred_flags) && seq == tp→rcv_nxt) {
      if (len == 0)
         /* Pure ack handling */
      else if(ack == tp→snd_una) {
         tp→rcv_next += payload_len;
         if ((int)seq – tp→rcv_acked) >= 0)
            *need_ack = true
      }
    }

In  the  fast  path  when  the  header  is  correctly  predicted,
critical processing is fully contained in the accelerator for
lowest latency, and worker CPUs don’t access the PCB so
cache locality of flow related data structures isn’t pertinent.
For programmability, this logic could be implemented in a
CPU thread that is driven by a hardware event loop. In a
CPU the  above  logic  requires  about  twenty  instructions,
and assuming an IPC of 1.4 and CPU clock frequency of 2
Ghz, the critical  region processing latency is about  eight
nanoseconds. Adding two nanoseconds for synchronization
overhead  and  applying the  equation  in  Figure  15(b),  the
maximum throughput for a single TCP flow is 100 million
pps. Figure 16 illustrates the benefits of this solution.

8. DISCUSSION & OPPORTUNITIES
In this paper we introduce an architecture for parallelism in
network  processing.  Networking  is  inherently  serialized
processing,  and  our  architecture  elicits  fine  grained
parallelism in serial data processing which has previously
been considered an oxymoron. While network processing is
the poster child of serial data processing, there are other use
cases  that  could benefit  from this  architecture,  including
communications  for  collective  operations  [37],  storage
operations to a flash drive, or database queries.
A recent trend in network processing is programmability in
the  high  performance  path  such  as  P4  [7].  For  this,  we
advocate  placing  CPUs  in  the  data  path  which  we  call
CPU-in-the-datapth. This idea runs counter to conventional
wisdom  since  performance  of  general  purpose  CPUs
doesn’t  compare  with  that  of  specialized  fixed  function
ASICs,  however, in  our  architecture  we  employ domain
specific CPUs for network processing. RISC-V [4], with its
open  ISA  and  ease  of  customization,  is  the  perfect
foundation  for  domain  specific  CPUs.  We  can  take  out
things  not  needed  for  network  processing,  such  as  the
floating point  and  vector  unit,  and  we can  add  our  own
ISA extensions  specific  to  network  processing.  We have
defined new instructions in four classes: Parser, Threading
and Synchronization (dependency primitives), Accelerator
(general instruction to invoke accelerators), and Arithmetic
(including  instructions  for  checksum computation).  With
these  extensions,  horizontal  and  vertical  parallelism,  and
in-line  acceleration  we  project  that  CPU-in-the-datapath
will  achieve  >85%  of  ASIC  performance,  but  be  fully
programmable with lower cost and power consumption.
A programmable  data  path  is  a  good start,  however  for
widespread  adoption  it  must  be  easily  programmable.
While Domain Specific  Languages  (DSLs),  like P4 [42],
have made inroads in data path programmability, they tend
to be unfamiliar to programmers18 and have a steep learning
curve.  With  ease-of-use  in  mind,  we  eschew  DSLs  and
provide a C library [39] for programming a data path. Our
programming model is language agnostic, and we intend to
support it in other languages including Python and Rust.
Compilers are essential to data path programmability. Their
function is  to  take  the programmer’s  expression  of  what
they want  to  do and  convert  it  into an  optimized  binary
image for a target.  Accordingly,  we modified the LLVM
CLANG [9] compiler specifically for our model. We have
also  defined  a  new  Intermediate  Representation  (IR)  in
JSON called Common Parser Language (or CPL) [24] that
encourages “freedom of front end languages”. We are also
investigating compiler techniques, including using CLANG
and MLIR [35]  as  a  parallelizing  compiler  [60],  to  find
opportunities  for  both  horizontal  and  vertical  parallelism
and automatically insert dependency primitives. 

17 This code snippet is adapted from Van Jacobson’s famous “TCP in 30 Instructions” email [26]. The Linux implementation of TCP
Header Prediction [30] “loosely follows” that with some additional processing of TCP timestamps and the TCP receive window.

18 We note there are 15.7 million Python, & 11 million C/C++ programmers worldwide [50] and these languages are generally familiar.
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Figure 16: Maximum achievable throughput (pps) of TCP  for
different numbers of connections. Four methods are compared: 
Linux with multi-queue, SDPU with critical region accelerators, 
and optimized multi queue (with SDPU as a base) with hash and 
round robin steering. We assume that there are 128 threads (or 
queues) for each method where a thread can process 7.8 million 
packets per second for a maximum throughput of one billion pps.
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