
Linux Networking Offload Infrastructure
 Tom Herbert, SiPanda

1. Introduction
Ubiquitous hardware offloads in Linux networking has
been the dream almost from the very beginning. While
there have been many efforts over the years for offloading
various networking features to hardware, very few offloads
can be called an unqualified success. For a long time this
didn’t matter, networking developers were able to “paper
over the problem” through various optimizations in kernel
software. Offloads, with the exception of some simpler
ones like checksum offload, RSS, and TSO, were
considered “nice to have” features relegated to a few
specialized use cases. But today the landscape has changed.
There’s not a lot of low hanging fruit left to reap in the
software stack, and thanks to the end of Moore’s Law and
Dennard Scaling we can no longer rely on increases in CPU
performance for the stack to keep pace with ever increasing
performance requirements of demanding workloads like
AI/ML. Hence, there is new motivation, and even urgency,
to make offloads succeed in the Linux networking stack.
The road for offloads in Linux has been bumpy to say the
least. There is no overall design or infrastructure for Linux
offloads, driver APIs tend to be ad hoc and verbose, and
each offload seems to be designed in isolation of other
offloads. Probably the biggest impediment is disconnects
between kernel software and hardware devices. The base
assumption of an offload is that the device is offloading
functionality that is otherwise in software that runs on the
host CPU, so even slight discrepancies in behavior between
the kernel and the offload device can be problematic. This
is especially true when discrepancies manifest themselves
at rare edge conditions; for instance, a data center operator
doesn’t want to find out that an offload fails under extreme
load on Cyber Monday which is typically the day of the
year with the most load on the Internet. Discrepancies arise
since an offload device is not part of the kernel and is
basically a “back box”. Without visibility into the inner
workings of the device, the kernel has no way to establish
that the offload device does what the kernel wants it to do.
Blindly using such an offload can become a risk potentially
liability to the data center.
In this paper, we propose a solution to the Linux offload
conundrum. There are two parts to the solution: 1) A
consistent and simple API between the kernel and device
drivers for offloads, 2) Mechanisms for the kernel to get
visibility and assurances that the offload device implements
functionality in the same manner that the kernel does.
These two parts are the basis for a networking offload
infrastructure in Linux. A key enabler for ubiquitous
offloads is the recent emergence of programmable devices.

2. Networking Offloads
In this section we provide an overview of networking
offloads and describe the issues in creating useful offloads.

2.1 Domain Specific Accelerators
Offloads are a form of Domain Specific Accelerators for
networking. Domain Specific Accelerators, (DSAs) are
specialized hardware components that accelerate certain
workloads within a specific domain or application.
Domain Specific Accelerators can be characterized by three
basic operational models:

• Offloads
• Acceleration instructions
• Accelerator engines

For each model, we can consider the programming model,
hardware interaction, benefits and disadvantages, as well as
opportunities for development. The three models are
complementary and can be combined to work in tandem in
a hybrid accelerator system model as shown in Figure 1.

As suggested in Figure 1, offload is the host interface into a
domain specific hardware device. The device may employ
accelerator engines or specialized instructions to perform
the backend offload processing. In the best case scenario,
the offload device is programmable such that arbitrary
offload functionality can be achieved by programming the
device. Programmability also facilitates techniques for the
kernel to be assured that the offload functionality matches
that of the kernel; basically, this is accomplished if the
offload device and kernel run the same program.

2.2 Offloads
Offload acceleration, or just offloads, is an early form of
DSA. Almost every commercial NIC (Network Interface
Card) in existence offers some form of offload. The basic
idea is that functionality running in the host CPU is run in a
hardware device instead. Use cases of offloads include
checksum offload, TCP Segmentation Offload (TSO),
Receive Side Coalescing (RSC), and TLS and TCP offload.

1

Figure 1: Example system architecture for accelerators. This
diagram shows a hybrid accelerator model that employs offloads,
accelerator instructions, and accelerator engines.

The programming model of offloads is a “tail call” from a
program running in a host CPU to a device, or from the
device to the host CPU. In the networking transmit path,
instructions to request offloaded functions are specified in a
transmit descriptor, the descriptor is then interpreted by the
NIC and the requested offload processing is performed (for
instance, computing and setting the TCP checksum).
Receive offload works in reverse, the NIC autonomously
performs offload processing on received packets and
reports results in receive descriptors (for instance, the ones’
complement sum over the packet for verifying checksums).
The advantage of offloads is the simple programming
model-- the details of an offload are easily abstracted from
the programmer by a device driver.
A disadvantage of offloads is that there’s no means to
leverage offload functionality outside of the networking
path with any granularity. For instance, if a NIC has an
encryption engine then it can only be used in the context of
sending a packet, a CPU program can’t call the engine to
encrypt an arbitrary block of host memory.

2.3 Offloads have been an underachiever
Deployment and ubiquity of offloads is underwhelming,
and only a few simple offloads like checksum offload have
been widely deployed. The impediment is that hardware
offloads are only approximations of software functionality;
even small discrepancies in functionality might lead to
nondeterministic or incorrect behaviors. Discrepancies in
functionality happen where there are disconnects between
the kernel and the device or its driver.

2.4 API complexity in features
One challenge in offloads is expressing the offload
functionality that a device supports. In Linux, supported
offload functionality is expressed in a set of “netdev feature
flags” for the device [8]. Even though there are only a few
basic offloads, the number of feature flags for offloads has
exploded due to so many variants of different offloads. In
some regard, the current API for expressing offloads is a
“mess” [11]. As an example, consider the features flags for
indicating GSO or TSO support. Just for this one offload
feature, there are nineteen feature flags:

NETIF_F_TSO, NETIF_F_GSO_ROBUST,
NETIF_F_TSO_ECN, NETIF_F_TSO_MANGLEID,
NETIF_F_TSO6, NETIF_F_FSO,
NETIF_F_GSO_GRE, NETIF_F_GSO_GRE_CSUM,
NETIF_F_GSO_IPXIP4, NETIF_F_GSO_IPXIP6,
NETIF_F_GSO_UDP_TUNNEL,
NETIF_F_GSO_UDP_TUNNEL_CSUM,
NETIF_F_GSO_PARTIAL,
NETIF_F_GSO_TUNNEL_REMCSUM,
NETIF_F_GSO_SCTP_BIT, NETIF_F_GSO_ESP,
NETIF_F_GSO_UDP, NETIF_F_GSO_UDP_L4,
NETIF_F_GSO_FRAGLIST

To make matters worse, there are several different sets of
features flags: features, vlan_features, hw_enc_features,
mpls_features. The cross product of the features bits and
feature set gives a combinatorial number of possibilities.
Note that this isn’t just TSO/GSO, other offloads have
similar combinatorial properties in features.

2.5 Specifying offload requirements
One approach that could be considered is to specify offload
functionality in normative requirements. This is what the
“OCP NIC Core Features Specification” [1] endeavors to
do. That document specifies requirements for checksum
offload, segmentation offload, receive segment coalescing,
and traffic shaping. While this is a noble effort, offloads
don’t easily lend themselves to being defined by normative
requirements. They are not protocols, and really not even
something that could be standardized. Another problem is
that to a large extent the offloads are being specified “after
the fact”. Implementations have already deployed many of
these offloads, so in some cases it’s more that the OCP
specification is documenting what implementations already
does rather than specifying forward looking requirements.
A good example of the difficulties of trying to specify
requirements for offloads is in the requirements for Receive
Segment Coalescing (RSC) in the “OCP NIC Core Features
Specification”. That section describes Receive Segment
Coalescing in normative requirements language. But for all
the listed requirements, the documents ultimately states:

It takes the software Generic Receive Offload (GRO) in
Linux v6.3 as ground truth. If the two disagree, that
source code takes precedence.

In other words, the source is the requirements document.
Of course this is not unexpected, Receive Segment
Coalescing offloads Generic Receive Offload so the
expectation of the kernel is naturally that the offload
provides the same functionality (i.e. no discrepancies
between hardware and software functionality).

2.6 Buggy offloads
Because of the disconnects between software and hardware
and the lack of visibility, networking offloads are prone to
bugs. These are most likely to manifest themselves under
edge conditions that may have not been well tested.
One area in which has seen a lot of bugs is protocol specific
checksum offload [7]. In a protocol specific checksum
offload, the device takes responsibility for computing and
setting the TCP or UDP checksum on transmit, and reports
that the TCP or UDP checksum is validated on receive.
Protocol specific checksum offload requires that the device
is able to parse and process specific network and transport
layer protocols. Protocol specific checksum offload can be
contrasted with protocol agnostic checksum offload, where
the device doesn’t need to understand any specific network
or transport protocols. On transmit, the device computes the

2

ones’ complement sum from some csum_offset start point
in a packet through the end of the packet and sets the value
at a csum_offset in the packet, and on receive the device
just returns the ones’ complement sum over the packet and
the stack can use that to verify any number of transport
layer checksums in a packet. Protocol agnostic checksum
offload has long been the preferred method, and in fact
protocol specific checksum offload is obsoleted per
comments in skbuff.h [9], and [10] presents the arguments
why protocol agnostic checksum offload is recommended.
Protocol specific checksum offload is prone to bugs since
the device must parse packets on both transmit and receive.
Problems occur when the device encounters a packet with
protocols it doesn’t understand. On receive, the most likely
failure case is that the device is unable to validate a
checksum and so the host must do it. However on transmit,
if a device is unable to correctly parse the packet then the
packet might be sent with an incorrect checksum and the
packet will be dropped.
As an example, consider that a TCP packet is sent with an
SRv6 routing header [2]. In this case, the destination IP
address in the packet is not the final destination which is
used in the pseudo header for computing the TCP or UDP
checksum. If a packet with a router header is sent with
transmit protocol specific checksum offload then an
incorrect checksum is produced and the packet is dropped
because the device uses the incorrect address in the pseudo
header. This has been verified to happen with several NICs.

3. The Fundamental Offload Requirement
The problems with offloads motivates us to define the
“fundamental requirement of offloads”:

The functionality of a hardware offload must be exactly
the same as that in the CPU software being offloaded

This is a generalization of the OCP requirement [1] for
Receive Side Coalescing that the requirements implied by
the software are the ground truth. Unlike the OCP case, this
requirement is independent of any specific version of
software. The requirements for an offload are derived from
the software being offloaded at runtime. Additionally, this
requirement isn’t specific to just Receive Side Coalescing,
but applies to all offloads.
While the fundamental requirement is easily stated, that
begs the obvious question: How can this requirement be
met? Our answer is:

Run the same code in the CPU and the offload target
Programmable devices are an enabler of this. We can infer
an offload is viable if the same program code runs in both
the host CPU and the device. Specifically, we would
generate two images from the same base source code, one
that runs in the CPU and one that runs in the offload
device. An offload is considered viable if the program in
the device matches that of the one being ran in the kernel.

4. Design for an offload infrastructure
In this section we present the design for an offload
infrastructure in Linux. Requirements are:

• Move complexity out of core stack
• Assume programmable devices, compilers
• Simplify host/device interfaces
• Method for host CPU to query device to see what

programs are supported
• Deal with resource limits in device

4.1 Moving complexity from the stack to devices
Our base design philosophy is that the core kernel stack
offloads functionality to the NIC device driver.
In a receive offload the device needs to autonomously
decide if an offload can be performed, this entails parsing
and processing at least some of the received packet. The
role of the driver is to read the offload results of a packet
from the receive descriptor and convey them to stack via
skbuff fields [9].
For a transmit offload, it’s up to the device driver how to
implement the required functionality of the requested
offload. The driver may offload to the device, or may
invoke a software helper function. The driver can make this
determination based on whether the device has sufficient
capabilities to perform the offload-- that is determined by
inspecting the metadata in an skbuff or by parsing the
packet if necessary. To assist drivers when processing
cannot be offloaded, the core stack can provide helper
functions. One example is skb_checksum_help that is called
by several drivers when they determine that a device cannot
properly offload the TCP or UDP checksum in a transmit
packet.
By moving the impetus for determining whether an offload
to a device is possible to the driver, we can greatly simplify
the offload APIs and the core stack. For instance, the
nineteen feature flags for TSO/GSO could conceivably be
replaced by just one flag: NETIF_F_GSO. When a driver
advertising that flag sees a packet marked with GSO, it can
inspect the skbuff fields and perhaps parse the packet to
determine if offload to the device is supported; if it’s not
then the driver would invoke helper functions for GSO.

4.2 Programmable devices
As mentioned in Section 3, the most direct way for the
kernel to be assured that an offload is doing what it wants is
to run the same program in both the kernel and the offload
device. The idea is that a developer implements the offload
functionality in generic source code (not hardware or
software specific code). The code is then compiled twice--
once to run in the kernel, for instance in XDP/eBPF, and
once to run in the hardware device, for instance into P4
backend binary. Each target image can then be loaded and
run in their perspective environments (Figure 2).

3

4.3 Querying offload supported
When both the kernel and offload device are running the
same program then the offload is viable. To establish this
equivalency, the kernel queries the device about what
programs have been loaded. If a loaded program is the
same as that used in the kernel then the offload is allowed.
To check for equivalent functionality, we propose that
programs are identified by a hash of the original source
code or an intermediate representation (IR). As part of the
compiling process, a hash, SHA-1 for instance, is computed
over the input source code or IR. The resultant hash value
is saved in each target image.
When the kernel wishes to offload some functionality, it
queries the driver for what programs have been loaded for
the function. The driver either queries the device or
consults a table that lists each of the programs that are
loaded in the device. The driver returns the hash value that
is attached to the program image. When a hash is returned,
the kernel compares the value to that of the one that is
running in the kernel (for instance, the hash associated with
a loaded eBPF program). If the hashes exactly match, then
the kernel can assume that the device offloads exactly the
same functionality running in the kernel.

4.4 Resources in an offload device
The hash method is sufficient to validate that an offload
device implements the same functionality as the kernel,
however we also need to consider the available resources of
an offload device.
In many cases, offload devices are resource limited. A
device will often have fewer resources than the the host.
This is especially true in local memory as a device may
have orders of magnitude less memory. When the kernel is
managing an offload, it needs to take resource limits into
account. We especially need to consider stateful offloads,
or offloads that involve table lookups-- the offload device
may support fewer table entries or state entries.

4.5 Offload procedures
The procedures for a network offload are (Figure 3) [6]:

1. User compiles source code with parser into
intermediate representation (IR) (Figure 4)
• IR could be LLVM IR with parser in MLIR

using a “parser dialect”
• IR for parser could be Common Parser

Representation (.json)
2. Compute hash, SHA1, over the IR bits. Save with

the IR file
3. Invoke backend compilers to compile IR into

targets. Attach hash to each target image file
• Compile to executable for running in kernel

(e.g. to XDP/eBPF)
• Hardware “blob” for executing in hardware

target
4. User puts the HW blob in /lib/firmware
5. devlink dev $dev reload action parser-fetch

$filename
6. devlink loads the file, parses it and passes the blob

to the driver
• driver/fw reinitializes the HW parser
• User can inspect the graph by dumping the

common parser representation
7. The parser tables are annotated with Linux offload

targets (routes, classic ntuple, nftables, flower etc.)
8. ethtool ntuple is extended to support insertion of

arbitrary rules into the "raw" tables
9. To enable an offload, kernel compares the hash of

the program loaded in the kernel to that of the
program in the device
◦ Call ndo function to request loaded programs

and their hashes from driver
◦ If hashes are equal then offload is permitted

4

Figure 2: Offloading from a common program. A common
source program is compiled twice: once for running in the kernel
(or host), and once for running in an offload hardware device.

Figure 3: Offload procedures. This diagram shows the
procedures for offloading some functionality to a device.

5. Retrofitting the five basic offloads
In this section we discuss work for retrofitting the five most
basic offloads for the Linux Offload Infrastructure.

5.1 Transmit checksum
The goal of transmit checksum work is to remove protocol
specific checksum offload from the core stack. Remove
features NETIF_F_IPCSUM, and NETIF_F_IPV6CSUM,
and set NETIF_F_HWCSUM in all drivers supporting
checksum offload. For a legacy device that only supports
protocol specific checksum offload, the driver can inspect
each packet to determine if the checksum is offloadable to
its device; if it is not offloadable then the driver can call
skb_checksum_help to compute the checksum.
There are few patches needed to support this:

• Prerequisites patch sets
• drivers: Fix drivers doing TX csum offload

with EH (ipv6_skip_exthdr_no_rthdr)
• crc-offload: Split RX CRC offload from csum

offload
• Flow dissector: Parse into UDP encapsulations

• Convert drivers to NETIF_F_HWCSUM
• Add helper function:

skb_csum_hwoffload_legacy_check
• Fairly minor change to most drivers

5.2 Receive checksum
The goal of receive checksum work is to remove protocol
specific checksum offload for the core stack. This entails
removing the feature flag CHECKSUM_UNNECESSARY
and having all drivers just use CHECKSUM_COMPLETE
to report an offloaded checksum. For legacy devices that
only support protocol specific checksum offload, a helper
function is provided that does a generic csum-unnecessary
to csum-complete conversion.
Patches to support this include:

• Convert drivers to CHECKSUM_UNNECESSARY
• Add helper function:

skb_csum_rx_legacy_convert_unnecessary
• Change legacy drivers to call

skb_csum_rx_legacy_convert_unnecessary
• Fairly minor change to most drivers

5.3 RSS (and aRFS)
We can consider RSS [12] to be an offload of Receive
Packet Steering (RPS), and similarly aRFS is an offload of
Receive Flow Steering [3]. For these, the biggest need is a
programmable parser (in both software and hardware) [4].
The parser that underlies RPS is flow dissector. Flow
dissector is not programmable, however we propose
moving flow dissector to eBPF in [5].

Given a programmable flow dissector, we can then offload
it using the techniques described in section 4.6.

5.4 TSO (GSO)
TCP Segmentation Offload (TSO) is an offload of Generic
Segmentation Offload (GSO). Similar to offloading flow
dissector, the first step would be to rewrite the GSO logic
in eBPF. That establishes the standalone program that can
be offloaded to a device using techniques in Section 4.
The GSO operation does not require parsing the packet. In
order to maintain this property, the GSO related fields in an
skbuff could be conveyed to the device in a transmit
descriptor (gso_size, gso_segs, gso_type, etc.).
For legacy devices, a helper function skb_gso_helper could
be created. If a driver sees a packet for GSO offload that
cannot be offloaded to the device, then the driver can call
the helper function to perform the GSO operation.
A side effect of this design is that most of the
NETIF_F_GSO_* flags can be eliminated and just one
flag, NETIF_F_GSO, would be sufficient.

5.5 RSC (GRO)
Receive Side Coalescing (RSC) is an offload of Generic
Segmentation Offload. Similar to GSO, for offloading
GRO the kernel implementation of GRO could be rewritten
in eBPF, and that could serve as the common program that
is offloaded to a device.
In its nature, RSC and GRO require packets to be parsed.
Parsing could be done by invoking a programmable parser
(either in the hardware device or a programmable flow
dissector in software).

6. Conclusion and status
Implementing the Linux Offload Infrastructure is a fairly
significant effort. The full project can be broken down into
smaller milestones. Initially, efforts will be focused on
checksum offload and fixing bugs in that. Subsequently,
replacing flow dissector with eBPF is probably the next
milestone, followed by support for RSS, TSO, and GRO.
Once the basic offloads are supported by the infrastructure,
then more advanced offloads can be supported including
TC flower offload, P4-TC offload, and TCP offload.

5

Figure 4: Compiling for offloads. A common source code
can be compiled to different hardware and software targets.

REFERENCES
[1] Dan Daly, Jakub Kicinski, and Willem de Brujin. August 9,

2023. Open Compute Project – NIC Core Features
Specificiation. Open Compute Project.
https://www.opencompute.org/documents/ocp-server-nic-
core-features-specification-ocp-spec-format-1-1-pdf

[2] Filsfils, C., Ed., Dukes, D., Ed., Previdi, S., Leddy, J.,
Matsushima, S., and D. Voyer, "IPv6 Segment Routing
Header (SRH)", RFC 8754, DOI 10.17487/RFC8754, March
2020, https://www.rfc-editor.org/info/rfc8754

[3] Tom Herbert and Willem de Brujin. May 2014. Scaling in the
Linux Stack. Linux Kernel Documentation.
https://docs.kernel.org/networking/scaling.html

[4] Tom Herbert, Pratyush Khan, and Aravind Buduri. 2022. High
Performance Programmable Parser. Slides from Netdev 0x16
conference. Slides 9-17.
https://netdevconf.info/0x16/papers/11/High%20Performance
%20Programmable%20Parsers.pdf

[5] Tom Herbert and Pedro Tammela. May 2021. Replacing Flow
Dissector with PANDA Parser. Netdev 0x15. Scaling in the
Linux Stack. https://netdevconf.info/0x15/slides/16/Flow
%20dissector_PANDA%20parser.pdf

[6] Jakub Kicinski, Extracted form email sent to Netdev list with
subject “[PATCH net-next v16 00/15] Introducing P4TC
(series 1)”, June 11, 2024.

[7] Linux kernel documentation. Checksum offloads.
https://docs.kernel.org/networking/checksum-offloads.html

[8] Linux kernel netdev_feautures.h.
https://github.com/torvalds/linux/blob/master/include/linux/net
dev_features.h

[9] Linux kernel skbuff.h.
https://github.com/torvalds/linux/blob/master/include/linux/sk
buff.h

[10] David S. Miller. November 2015. Hardware Checksumming:
Less is More. Netdev 1.1 conference. Scaling in the Linux
Stack. Linux Kernel Documentation.
https://www.netdevconf.org/1.1/keynote-hardware-
checksumming-less-more-david-s-miller.html

[11] Michal Miroslaw. May 2014. Netdev features mess and how
to get out from it alive. Linux Kernel Documentation.
https://docs.kernel.org/networking/netdev-features.html

[12] A. Viviano. 2023. Introduction to Receive Side Scaling.
Microsoft. https://learn.microsoft.com/en-us/windows-
hardware/drivers/network/introduction-to-receive-side-
scaling

6

https://learn.microsoft.com/en-us/windows-hardware/drivers/network/introduction-to-receive-side-scaling
https://learn.microsoft.com/en-us/windows-hardware/drivers/network/introduction-to-receive-side-scaling
https://learn.microsoft.com/en-us/windows-hardware/drivers/network/introduction-to-receive-side-scaling

7

	1. Introduction
	2. Networking Offloads
	2.1 Domain Specific Accelerators
	2.2 Offloads
	2.3 Offloads have been an underachiever
	2.4 API complexity in features
	2.5 Specifying offload requirements
	2.6 Buggy offloads

	3. The Fundamental Offload Requirement
	4. Design for an offload infrastructure
	4.1 Moving complexity from the stack to devices
	4.2 Programmable devices
	4.3 Querying offload supported
	4.4 Resources in an offload device
	4.5 Offload procedures

	5. Retrofitting the five basic offloads
	5.1 Transmit checksum
	5.2 Receive checksum
	5.3 RSS (and aRFS)
	5.4 TSO (GSO)
	5.5 RSC (GRO)

	6. Conclusion and status
	REFERENCES

