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1. Introduction
Ubiquitous  hardware  offloads  in  Linux  networking  has
been  the  dream  almost  from  the  very  beginning.  While
there have been many efforts over the years for offloading
various networking features to hardware, very few offloads
can be called an unqualified success. For a long time this
didn’t matter,  networking developers were able to “paper
over the problem” through various optimizations in kernel
software.  Offloads,  with  the  exception  of  some  simpler
ones  like  checksum  offload,  RSS,  and  TSO,  were
considered  “nice  to  have”  features  relegated  to  a  few
specialized use cases. But today the landscape has changed.
There’s  not a lot of low hanging fruit  left to reap in the
software stack, and thanks to the end of Moore’s Law and
Dennard Scaling we can no longer rely on increases in CPU
performance for the stack to keep pace with ever increasing
performance  requirements  of  demanding  workloads  like
AI/ML. Hence, there is new motivation, and even urgency,
to make offloads succeed in the Linux networking stack.
The road for offloads in Linux has been bumpy to say the
least. There is no overall design or infrastructure for Linux
offloads, driver APIs tend to be ad hoc and verbose,  and
each  offload  seems  to  be  designed  in  isolation  of  other
offloads.  Probably the biggest  impediment  is  disconnects
between kernel  software and hardware devices.  The base
assumption of  an offload is that  the device is  offloading
functionality that is otherwise in software that runs on the
host CPU, so even slight discrepancies in behavior between
the kernel and the offload device can be problematic. This
is especially true when discrepancies manifest themselves
at rare edge conditions; for instance, a data center operator
doesn’t want to find out that an offload fails under extreme
load on Cyber Monday which is typically the day of the
year with the most load on the Internet. Discrepancies arise
since  an  offload  device  is  not  part  of  the  kernel  and  is
basically  a  “back  box”.  Without  visibility  into  the  inner
workings of the device, the kernel has no way to establish
that the offload device does what the kernel wants it to do.
Blindly using such an offload can become a risk potentially
liability to the data center. 
In this paper, we propose a solution to the Linux offload
conundrum.  There  are  two  parts  to  the  solution:  1)  A
consistent and simple API between the kernel and device
drivers for offloads,  2) Mechanisms for the kernel  to get
visibility and assurances that the offload device implements
functionality  in  the  same  manner  that  the  kernel  does.
These  two  parts  are  the  basis  for  a  networking  offload
infrastructure  in  Linux.  A  key  enabler  for  ubiquitous
offloads is the recent emergence of programmable devices. 

2. Networking Offloads
In  this  section  we  provide  an  overview  of  networking
offloads and describe the issues in creating useful offloads.

2.1 Domain Specific Accelerators
Offloads are a form of Domain Specific Accelerators  for
networking.  Domain  Specific  Accelerators,  (DSAs)  are
specialized  hardware  components  that  accelerate  certain
workloads within a specific domain or application.
Domain Specific Accelerators can be characterized by three
basic operational models:

• Offloads
• Acceleration instructions
• Accelerator engines

For each model, we can consider the programming model,
hardware interaction, benefits and disadvantages, as well as
opportunities  for  development.  The  three  models  are
complementary and can be combined to work in tandem in
a hybrid accelerator system model as shown in Figure 1.

As suggested in Figure 1, offload is the host interface into a
domain specific hardware device. The device may employ
accelerator  engines or specialized instructions to perform
the backend offload processing. In the best case scenario,
the  offload  device  is  programmable  such  that  arbitrary
offload functionality can be achieved by programming the
device. Programmability also facilitates techniques for the
kernel to be assured that the offload functionality matches
that  of  the  kernel;  basically,  this  is  accomplished  if  the
offload device and kernel run the same program.

2.2 Offloads
Offload acceleration, or just offloads, is an early form of
DSA. Almost  every  commercial  NIC (Network  Interface
Card) in existence offers some form of offload. The basic
idea is that functionality running in the host CPU is run in a
hardware  device  instead.  Use  cases  of  offloads  include
checksum  offload,  TCP  Segmentation  Offload  (TSO),
Receive Side Coalescing (RSC), and TLS and TCP offload.
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Figure 1: Example system architecture for accelerators. This 
diagram shows a hybrid accelerator model that employs offloads, 
accelerator instructions, and accelerator engines.



The programming model of offloads is a “tail call” from a
program running in a host CPU to a device,  or from the
device to the host CPU. In the networking transmit path,
instructions to request offloaded functions are specified in a
transmit descriptor, the descriptor is then interpreted by the
NIC and the requested offload processing is performed (for
instance,  computing  and  setting  the  TCP  checksum).
Receive offload works in reverse,  the NIC autonomously
performs  offload  processing  on  received  packets  and
reports results in receive descriptors (for instance, the ones’
complement sum over the packet for verifying checksums).
The  advantage  of  offloads  is  the  simple  programming
model-- the details of an offload are easily abstracted from
the programmer by a device driver.
A  disadvantage  of  offloads  is  that  there’s  no  means  to
leverage  offload  functionality  outside  of  the  networking
path with any granularity.  For instance,  if  a  NIC has an
encryption engine then it can only be used in the context of
sending a packet, a CPU program can’t call the engine to
encrypt an arbitrary block of host memory.

2.3 Offloads have been an underachiever
Deployment  and  ubiquity  of  offloads  is  underwhelming,
and only a few simple offloads like checksum offload have
been  widely  deployed.  The impediment  is  that  hardware
offloads are only approximations of software functionality;
even  small  discrepancies  in  functionality  might  lead  to
nondeterministic  or  incorrect  behaviors.  Discrepancies  in
functionality happen where there are disconnects between
the kernel and the device or its driver. 

2.4 API complexity in features
One  challenge  in  offloads  is  expressing  the  offload
functionality  that  a  device  supports.  In  Linux,  supported
offload functionality is expressed in a set of “netdev feature
flags” for the device [8].  Even though there are only a few
basic offloads, the number of feature flags for offloads has
exploded due to so many variants of different offloads. In
some regard, the current API for expressing offloads is a
“mess” [11]. As an example, consider the features flags for
indicating GSO or TSO support. Just for this one offload
feature, there are nineteen feature flags: 

NETIF_F_TSO, NETIF_F_GSO_ROBUST, 
NETIF_F_TSO_ECN, NETIF_F_TSO_MANGLEID, 
NETIF_F_TSO6, NETIF_F_FSO, 
NETIF_F_GSO_GRE, NETIF_F_GSO_GRE_CSUM, 
NETIF_F_GSO_IPXIP4, NETIF_F_GSO_IPXIP6, 
NETIF_F_GSO_UDP_TUNNEL, 
NETIF_F_GSO_UDP_TUNNEL_CSUM, 
NETIF_F_GSO_PARTIAL, 
NETIF_F_GSO_TUNNEL_REMCSUM, 
NETIF_F_GSO_SCTP_BIT, NETIF_F_GSO_ESP, 
NETIF_F_GSO_UDP, NETIF_F_GSO_UDP_L4, 
NETIF_F_GSO_FRAGLIST

To make matters worse, there are several different sets of
features  flags:  features,  vlan_features,  hw_enc_features,
mpls_features.  The cross product of the features  bits and
feature  set  gives  a  combinatorial  number of  possibilities.
Note  that  this  isn’t  just  TSO/GSO,  other  offloads  have
similar combinatorial properties in features.

2.5 Specifying offload requirements
One approach that could be considered is to specify offload
functionality in normative requirements.  This is what the
“OCP NIC Core Features Specification” [1] endeavors to
do.  That  document  specifies  requirements  for  checksum
offload, segmentation offload, receive segment coalescing,
and traffic  shaping. While this is  a noble effort,  offloads
don’t easily lend themselves to being defined by normative
requirements.  They are not protocols, and really not even
something that could be standardized. Another problem is
that to a large extent the offloads are being specified “after
the fact”. Implementations have already deployed many of
these offloads,  so in  some cases  it’s  more  that  the  OCP
specification is documenting what implementations already
does rather than specifying forward looking requirements.
A  good  example  of  the  difficulties  of  trying  to  specify
requirements for offloads is in the requirements for Receive
Segment Coalescing (RSC) in the “OCP NIC Core Features
Specification”.  That  section  describes  Receive  Segment
Coalescing in normative requirements language. But for all
the listed requirements, the documents ultimately states:

It takes the software Generic Receive Offload (GRO) in
Linux  v6.3  as  ground truth.  If  the  two disagree,  that
source code takes precedence.

In other words, the source  is  the requirements document.
Of  course  this  is  not  unexpected,  Receive  Segment
Coalescing  offloads  Generic  Receive  Offload  so  the
expectation  of  the  kernel  is  naturally  that  the  offload
provides  the  same  functionality  (i.e.  no  discrepancies
between hardware and  software functionality).

2.6 Buggy offloads
Because of the disconnects between software and hardware
and the lack of visibility, networking offloads are prone to
bugs. These are most likely to manifest themselves under
edge conditions that may have not been well tested.
One area in which has seen a lot of bugs is protocol specific
checksum  offload [7].  In  a  protocol  specific  checksum
offload, the device takes responsibility for computing and
setting the TCP or UDP checksum on transmit, and reports
that  the  TCP or  UDP checksum is  validated  on receive.
Protocol specific checksum offload requires that the device
is able to parse and process specific network and transport
layer protocols. Protocol specific checksum offload can be
contrasted with protocol agnostic checksum offload,  where
the device doesn’t need to understand any specific network
or transport protocols. On transmit, the device computes the
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ones’ complement sum from some  csum_offset start point
in a packet through the end of the packet and sets the value
at a  csum_offset in the packet,  and on receive the device
just returns the ones’ complement sum over the packet and
the stack can  use that  to verify  any number  of transport
layer checksums in a packet. Protocol agnostic checksum
offload  has  long  been  the  preferred  method,  and  in  fact
protocol  specific  checksum  offload  is  obsoleted  per
comments in skbuff.h [9], and [10] presents the arguments
why protocol agnostic checksum offload is recommended. 
Protocol specific checksum offload is prone to bugs since
the device must parse packets on both transmit and receive.
Problems occur when the device encounters a packet with
protocols it doesn’t understand. On receive, the most likely
failure  case  is  that  the  device  is  unable  to  validate  a
checksum and so the host must do it. However on transmit,
if a device is unable to correctly parse the packet then the
packet might be sent with an incorrect checksum and the
packet will be dropped. 
As an example, consider that a TCP packet is sent with an
SRv6 routing header  [2].  In  this  case,  the destination IP
address in the packet is not the final destination which is
used in the pseudo header for computing the TCP or UDP
checksum.  If  a  packet  with  a  router  header  is  sent  with
transmit  protocol  specific  checksum  offload  then  an
incorrect checksum is produced and the packet is dropped
because the device uses the incorrect address in the pseudo
header. This has been verified to happen with several NICs.

3. The Fundamental Offload Requirement
The  problems  with  offloads  motivates  us  to  define  the
“fundamental requirement of offloads”:

The functionality of a hardware offload must be  exactly
the same as that in the CPU software being offloaded

This  is  a  generalization  of  the  OCP requirement  [1]  for
Receive Side Coalescing that the requirements implied by
the software are the ground truth. Unlike the OCP case, this
requirement  is  independent  of  any  specific  version  of
software. The requirements for an offload are derived from
the software being offloaded at  runtime. Additionally, this
requirement isn’t specific to just Receive Side Coalescing,
but applies to all offloads.
While  the  fundamental  requirement  is  easily  stated,  that
begs the obvious question:  How can this  requirement  be
met? Our answer is:

Run the same code in the CPU and the offload target
Programmable devices are an enabler of this. We can infer
an offload is viable if the same program code runs in both
the  host  CPU  and  the  device.  Specifically,  we  would
generate two images from the same base source code, one
that  runs  in  the  CPU  and  one  that  runs  in  the  offload
device.  An offload is considered viable if the program in
the device matches that of the one being ran in the kernel.

4. Design for an offload infrastructure
In  this  section  we  present  the  design  for  an  offload
infrastructure in Linux. Requirements are:

• Move complexity out of core stack
• Assume programmable devices, compilers
• Simplify host/device interfaces
• Method for host CPU to query device to see what

programs are supported
• Deal with resource limits in device

4.1 Moving complexity from the stack to devices
Our base  design philosophy is  that  the core  kernel  stack
offloads functionality to the NIC device driver.
In  a  receive  offload  the  device  needs  to  autonomously
decide if an offload can be performed, this entails parsing
and processing at least some of the received packet.  The
role of the driver is to read the offload results of a packet
from the receive descriptor and convey them to stack via
skbuff fields [9].
For a transmit offload, it’s up to the device driver how to
implement  the  required  functionality  of  the  requested
offload.  The  driver  may  offload  to  the  device,  or  may
invoke a software helper function. The driver can make this
determination based on whether  the device has  sufficient
capabilities to perform the offload-- that is determined by
inspecting  the  metadata  in  an  skbuff  or  by  parsing  the
packet  if  necessary.  To  assist  drivers  when  processing
cannot  be  offloaded,  the  core  stack  can  provide  helper
functions. One example is skb_checksum_help that is called
by several drivers when they determine that a device cannot
properly offload the TCP or UDP checksum in a transmit
packet.
By moving the impetus for determining whether an offload
to a device is possible to the driver, we can greatly simplify
the  offload  APIs  and  the  core  stack.  For  instance,  the
nineteen feature flags for TSO/GSO could conceivably be
replaced by just  one flag: NETIF_F_GSO. When a driver
advertising that flag sees a packet marked with GSO, it can
inspect  the skbuff  fields and perhaps parse  the packet  to
determine if offload to the device is supported; if it’s not
then the driver would invoke helper functions for GSO.

4.2 Programmable devices
As mentioned  in  Section  3,  the  most  direct  way for  the
kernel to be assured that an offload is doing what it wants is
to run the same program in both the kernel and the offload
device. The idea is that a developer implements the offload
functionality  in  generic  source  code  (not  hardware  or
software specific code). The code is then compiled twice--
once to run in the kernel, for instance in XDP/eBPF, and
once to run in the hardware device,  for  instance into P4
backend binary. Each target image can then be loaded and
run in their perspective environments (Figure 2).
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4.3 Querying offload supported
When both the kernel and offload device are running the
same program then the offload is viable. To establish this
equivalency,  the  kernel  queries  the  device  about  what
programs  have  been  loaded.  If  a  loaded  program  is  the
same as that used in the kernel then the offload is allowed. 
To  check  for  equivalent  functionality,  we  propose  that
programs are  identified  by a hash of  the  original  source
code or an intermediate representation (IR). As part of the
compiling process, a hash, SHA-1 for instance, is computed
over the input source code or IR. The resultant hash value
is saved in each target image.
When the kernel  wishes to offload some functionality,  it
queries the driver for what programs have been loaded for
the  function.  The  driver  either  queries  the  device  or
consults  a  table  that  lists  each  of  the  programs  that  are
loaded in the device. The driver returns the hash value that
is attached to the program image. When a hash is returned,
the kernel  compares  the  value  to  that  of  the  one that  is
running in the kernel (for instance, the hash associated with
a loaded eBPF program). If the hashes exactly match, then
the kernel can assume that the device offloads exactly the
same functionality running in the kernel.

4.4 Resources in an offload device
The hash method is sufficient  to validate that  an offload
device  implements  the  same  functionality  as  the  kernel,
however we also need to consider the available resources of
an offload device.
In  many  cases,  offload  devices  are  resource  limited.  A
device will often have fewer resources  than the the host.
This is  especially  true in local  memory as  a  device may
have orders of magnitude less memory. When the kernel is
managing an offload, it needs to take resource limits into
account. We especially need to consider stateful offloads,
or offloads that involve table lookups-- the offload device
may support fewer table entries or state entries.

4.5 Offload procedures
The procedures for a network offload  are (Figure 3) [6]:

1. User compiles source code with parser into 
intermediate representation (IR) (Figure 4)
• IR could be LLVM IR with parser in MLIR 

using a “parser dialect”
• IR for parser could be Common Parser 

Representation (.json)
2. Compute hash, SHA1, over the IR bits. Save with 

the IR file
3. Invoke backend compilers to compile IR into 

targets. Attach hash to each target image file
• Compile to executable for running in kernel 

(e.g. to XDP/eBPF)
• Hardware “blob” for executing in hardware 

target
4. User puts the HW blob in /lib/firmware
5. devlink dev $dev reload action parser-fetch 

$filename
6. devlink loads the file, parses it and passes the blob 

to the driver
• driver/fw reinitializes the HW parser
• User can inspect the graph by dumping the 

common parser representation 
7. The parser tables are annotated with Linux offload 

targets (routes, classic ntuple, nftables, flower etc.) 
8. ethtool ntuple is extended to support insertion of 

arbitrary rules into the "raw" tables
9. To enable an offload, kernel compares the hash of 

the program loaded in the kernel to that of the 
program in the device
◦ Call ndo function to request loaded programs

and their hashes from driver
◦ If hashes are equal then offload is permitted
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Figure 2: Offloading from a common program. A common 
source program is compiled twice: once for running in the kernel 
(or host), and once for running in an offload hardware device.

Figure 3: Offload procedures. This diagram shows the 
procedures for offloading some functionality to a device.



5. Retrofitting the five basic offloads
In this section we discuss work for retrofitting the five most
basic offloads for the Linux Offload Infrastructure.

5.1 Transmit checksum
The goal of transmit checksum work is to remove protocol
specific  checksum  offload  from the  core  stack.  Remove
features  NETIF_F_IPCSUM,  and  NETIF_F_IPV6CSUM,
and  set  NETIF_F_HWCSUM  in  all  drivers  supporting
checksum offload. For a legacy device that only supports
protocol specific checksum offload, the driver can inspect
each packet to determine if the checksum is offloadable to
its device; if it is not offloadable then the driver can call
skb_checksum_help to compute the checksum.
There are few patches needed to support this:

• Prerequisites patch sets
• drivers: Fix drivers doing TX csum offload 

with EH (ipv6_skip_exthdr_no_rthdr)
• crc-offload: Split RX CRC offload from csum 

offload
• Flow dissector: Parse into UDP encapsulations

• Convert drivers to NETIF_F_HWCSUM
• Add helper function: 

skb_csum_hwoffload_legacy_check
• Fairly minor change to most drivers

5.2 Receive checksum
The goal of receive checksum work is to remove protocol
specific checksum offload for the core stack. This entails
removing the feature flag CHECKSUM_UNNECESSARY
and having all drivers just use CHECKSUM_COMPLETE
to report  an offloaded checksum. For legacy devices that
only support protocol specific checksum offload, a helper
function is provided that does a generic  csum-unnecessary
to csum-complete conversion.
Patches to support this include:

• Convert drivers to  CHECKSUM_UNNECESSARY
• Add helper function:

skb_csum_rx_legacy_convert_unnecessary
• Change legacy drivers to call 

skb_csum_rx_legacy_convert_unnecessary
• Fairly minor change to most drivers

5.3 RSS (and aRFS)
We can  consider  RSS  [12]  to  be  an  offload  of  Receive
Packet Steering (RPS), and similarly aRFS is an offload of
Receive Flow Steering [3]. For these, the biggest need is a
programmable parser (in both software and hardware) [4].
The  parser  that  underlies  RPS  is  flow  dissector.  Flow
dissector  is  not  programmable,  however  we  propose
moving flow dissector to eBPF in [5].

Given a programmable flow dissector, we can then offload
it using the techniques described in section 4.6.

5.4 TSO (GSO)
TCP Segmentation Offload (TSO) is an offload of Generic
Segmentation Offload  (GSO).  Similar  to  offloading  flow
dissector, the first step would be to rewrite the GSO logic
in eBPF. That establishes the standalone program that can
be offloaded to a device using  techniques in Section 4. 
The GSO operation does not require parsing the packet. In
order to maintain this property, the GSO related fields in an
skbuff  could  be  conveyed  to  the  device  in  a  transmit
descriptor (gso_size, gso_segs, gso_type, etc.).
For legacy devices, a helper function skb_gso_helper could
be created. If a driver sees a packet for GSO offload that
cannot be offloaded to the device, then the driver can call
the helper function to perform the GSO operation.
A  side  effect  of  this  design  is  that   most  of  the
NETIF_F_GSO_*  flags  can  be  eliminated  and  just  one
flag, NETIF_F_GSO, would be sufficient.

5.5 RSC (GRO)
Receive Side Coalescing (RSC) is  an offload of  Generic
Segmentation  Offload.  Similar  to  GSO,  for  offloading
GRO the kernel implementation of GRO could be rewritten
in eBPF, and that could serve as the common program that
is offloaded to a device.
In its nature, RSC and GRO require packets to be parsed.
Parsing could be done by invoking a programmable parser
(either  in  the  hardware  device  or  a  programmable  flow
dissector in software).

6. Conclusion and status
Implementing the Linux Offload Infrastructure is a fairly
significant effort. The full project can be broken down into
smaller  milestones.  Initially,  efforts  will  be  focused  on
checksum offload  and fixing bugs in  that.  Subsequently,
replacing  flow dissector  with eBPF is  probably  the  next
milestone, followed by support for RSS, TSO, and GRO.
Once the basic offloads are supported by the infrastructure,
then more advanced  offloads can be supported including
TC flower offload, P4-TC offload, and TCP offload.  
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Figure 4: Compiling for offloads. A common source code 
can be compiled to different hardware and software targets.



REFERENCES
[1] Dan Daly, Jakub Kicinski, and Willem de Brujin. August 9, 

2023. Open Compute Project – NIC Core Features 
Specificiation. Open Compute Project. 
https://www.opencompute.org/documents/ocp-server-nic-
core-features-specification-ocp-spec-format-1-1-pdf

[2] Filsfils, C., Ed., Dukes, D., Ed., Previdi, S., Leddy, J., 
Matsushima, S., and D. Voyer, "IPv6 Segment Routing 
Header (SRH)", RFC 8754, DOI 10.17487/RFC8754, March 
2020, https://www.rfc-editor.org/info/rfc8754

[3] Tom Herbert and Willem de Brujin. May 2014. Scaling in the 
Linux Stack. Linux Kernel Documentation. 
https://docs.kernel.org/networking/scaling.html

[4] Tom Herbert, Pratyush Khan, and Aravind Buduri. 2022. High
Performance Programmable Parser. Slides from Netdev 0x16 
conference. Slides 9-17. 
https://netdevconf.info/0x16/papers/11/High%20Performance
%20Programmable%20Parsers.pdf

[5] Tom Herbert and Pedro Tammela. May 2021. Replacing Flow 
Dissector with PANDA Parser. Netdev 0x15. Scaling in the 
Linux Stack. https://netdevconf.info/0x15/slides/16/Flow
%20dissector_PANDA%20parser.pdf

[6] Jakub Kicinski, Extracted form email sent to Netdev list with 
subject “[PATCH net-next v16 00/15] Introducing P4TC 
(series 1)”, June 11, 2024.

[7] Linux kernel documentation. Checksum offloads. 
https://docs.kernel.org/networking/checksum-offloads.html

[8] Linux kernel netdev_feautures.h. 
https://github.com/torvalds/linux/blob/master/include/linux/net
dev_features.h

[9] Linux kernel skbuff.h. 
https://github.com/torvalds/linux/blob/master/include/linux/sk
buff.h

[10] David S. Miller. November 2015. Hardware Checksumming: 
Less is More. Netdev 1.1 conference. Scaling in the Linux 
Stack. Linux Kernel Documentation. 
https://www.netdevconf.org/1.1/keynote-hardware-
checksumming-less-more-david-s-miller.html

[11] Michal Miroslaw. May 2014. Netdev features mess and how 
to get out from it alive. Linux Kernel Documentation. 
https://docs.kernel.org/networking/netdev-features.html

[12] A. Viviano. 2023. Introduction to Receive Side Scaling. 
Microsoft.  https://learn.microsoft.com/en-us/windows-
hardware/drivers/network/introduction-to-receive-side-
scaling

6

https://learn.microsoft.com/en-us/windows-hardware/drivers/network/introduction-to-receive-side-scaling
https://learn.microsoft.com/en-us/windows-hardware/drivers/network/introduction-to-receive-side-scaling
https://learn.microsoft.com/en-us/windows-hardware/drivers/network/introduction-to-receive-side-scaling


7


	1. Introduction
	2. Networking Offloads
	2.1 Domain Specific Accelerators
	2.2 Offloads
	2.3 Offloads have been an underachiever
	2.4 API complexity in features
	2.5 Specifying offload requirements
	2.6 Buggy offloads

	3. The Fundamental Offload Requirement
	4. Design for an offload infrastructure
	4.1 Moving complexity from the stack to devices
	4.2 Programmable devices
	4.3 Querying offload supported
	4.4 Resources in an offload device
	4.5 Offload procedures

	5. Retrofitting the five basic offloads
	5.1 Transmit checksum
	5.2 Receive checksum
	5.3 RSS (and aRFS)
	5.4 TSO (GSO)
	5.5 RSC (GRO)

	6. Conclusion and status
	REFERENCES

