
Domain Specific Accelerators for Networking:
Technologies and Opportunities for OCP
 Tom Herbert, SiPanda

Introduction
Domain Specific Accelerators, (DSAs) are specialized
hardware components that accelerate certain workloads
within a specific domain or application. The general
motivation and benefits for DSA have been well
documented. In this paper, we look at Domain Specific
Accelerators specifically for the domain of networking.
Considerations include models, manifestations, use cases,
system design, software/hardware integration, hardware
interfaces, APIs, and programming models.

DSA Models
Domain Specific Accelerators for networking can be
characterized by three basic operational models:

• Offloads
• Acceleration instructions
• Accelerator engines

For each of these models we consider the programming
model, hardware interaction, benefits and disadvantages, as
well as opportunities for development. The three models
are complementary and can be combined to work in tandem
in a hybrid accelerator system model as shown in Figure 1.

Offloads
Offload acceleration, or just offloads, is an early form of
DSA. Almost every commercial NIC (Network Interface
Card) in existence offers some form of offload. The basic
idea is that functionality running in the host CPU is run in a
hardware device instead. Use cases of offloads include
checksum offload, TCP segmentation offload, receive
coalescing, TLS offload, and TCP offload.
The programming model of offloads is a “tail call” from a
program running in a host CPU to a device, or from the
device to the host CPU. In the networking transmit path,
instructions to request offloaded functions are specified in a
transmit descriptor, the descriptor is then interpreted by the
NIC and the requested offload processing is performed (for
instance, computing and setting the TCP checksum).
Receive offload works in reverse, the NIC autonomously
performs offload processing on received packets and
reports results in receive descriptors (for instance, the ones’
complement sum over the packet for verifying checksums).
The advantage of offloads is its simple programming
model-- the details of an offload are easily abstracted from
the programmer by a device driver.

A disadvantage of offloads is that there’s no means to
leverage offload functionality outside of the networking
path with any granularity. For instance, if a NIC has an
encryption engine it can only be used in the context of
sending a packet, a CPU program can’t call the engine to
encrypt an arbitrary block of host memory.
Deployment and ubiquity of offloads is underwhelming,
and only a few simple offloads like checksum offload have
been widely deployed. The impediment is that hardware
offloads are only approximations of software functionality;
even small discrepancies in functionality might lead to
nondeterministic or incorrect behaviors. This motivates us
to define the “fundamental requirement of offloads”:

The functionality of a hardware offload must be exactly
the same as that in the CPU software being offloaded

While the fundamental requirement is easily stated, that
begs the obvious question: How can this requirement be
met? Our answer is:

Run the same code in the CPU and the offload target!
Programmable devices are an enabler. We can infer an
offload is viable if the same program code runs in both the
host CPU and the device. Specifically, we would generate
two images from the same base source code, one that runs
in the CPU and one that runs in the offload device. There
are some caveats: offload interfaces are still needed,
resource limitations of the offload device must be taken in
account, and a method is needed to query an offload device
to see if the program to be offloaded has been loaded.

Acceleration instructions
Acceleration instructions are effectively Domain Specific
Instructions. These are CPU instructions that can be output
by a compiler in a CPU executable binary. Examples of
acceleration instructions for networking are AES and CRC
instructions. Open Instruction Set Architecture (ISA), like
that of RISC-V, facilitates custom acceleration instructions.

1

Figure 1: Example system architecture for accelerators. This
diagram shows a hybrid accelerator model that employs offloads,
accelerator instructions, and accelerator engines.

The advantage of acceleration instructions is the simple
programming model. Typically, the instructions are used in
the back end of library functions such that the programmer
doesn’t even know they’re using them. Acceleration
instructions work best on data already in the CPU cache,
with functions that don’t require a lot of state. The
disadvantage of acceleration instructions is that they need
to be implemented in the CPU, and modifying a CPU may
require licensing the ISA, standardizing new instructions,
and compiler support for new instructions.
We have developed two sets of acceleration instructions for
networking: DISC (Dynamic Instruction Set Computer) and
parser instructions.
DISC defines a general acceleration instruction that can be
used to support a large class of custom accelerations. The
DISC opcode includes a function number as an immediate
operand. The function number is dynamic and is mapped to
a hardware function at runtime. As an example, the code
below uses DISC instructions to compute a SipHash over
sixty-four bytes. Performance is 97 cycles for RISC-V with
DISC instructions, versus 793 cycles for x86.
// Load first thirty-two bytes into regs a0-a3
ld a0, 0(a9); ld a1, 8(a9); ld a2, 16(a9); ld a3, 24(a9)
li a4, 64 // Set length
mv a5,a10; mv a6, a11 // Set up keys
disc a8,siphash_start$7 // Hash 32 bytes
ld a0, 32(a9); ld a1, 40(a9)
disc a8,siphash_round$7 // Hash 16 bytes
ld a0, 48(a9); ld a1, 56(a9)
disc a8,siphash_end2$1 // Hash final 16 bytes
Parser instructions implement high performance protocol
parsing in a CPU. They abstract out common functions of
parsing into instructions, where each instruction can
perform multiple sub-functions and leverage gate level
parallelism for high performance. The code below shows
an example for parsing the IPv4 header and extracting the
IP addresses as metadata. Performance is 17 cycles for
RISC-V with parser instructions, versus 77 cycles for x86.
prs.load.b paccum, pcurptr
prs.cmpi.h.stop paccum[1], 4 // Check IP version
prs.lensetmin.n pcurhdr, paccum[1], 4:20 // Hdr len
prs.load.b paccum, pcurptr+9
prs.cam.b pnext, paccum[0], 3 // Set up next proto
prs.load.h paccum, pcurptr+6
prs.load paccum, pcurptr+16 // Save addresses
prs.store.stp pframe+32, paccum
Accelerator Engines
Accelerator engines are external IP blocks that are accessed
by the CPU over an accelerator interconnect such as BoW
and AXI interfaces. Accelerator engines provide a message
based interface that allows a CPU to make requests and get
responses. The programming model is a type of Remote
Procedure Call (RPC). Figure 2 shows an example
processing flow for invoking an accelerator engine.

The advantage of accelerator engines is the RPC-like
programming model which allows a lot of granularity in
invoking functions. Ironically, this advantage is also its
disadvantage-- allowing a CPU to interact directly with
accelerator hardware opens the specter of isolation and
security issues. These issues might be manageable in the
kernel, but that would entail significant overhead in making
system calls to perform accelerations. For lowest overhead
and highest performance, we want to invoke accelerator
engines directly from user space applications, but that
requires a lot of infrastructure for security and isolation. As
suggested in Figure 1, one solution is to invoke accelerator
engines from Domain Specific CPUs in a closed and secure
environment (like an App CPU in a SmartNIC).
A standard and open API is critical to the success of
accelerator engines, and so we propose a simple message
format for accelerator request and replies. This common
format defines a sixty-four byte message, where the first
sixty-four bits hold a control header for message delivery,
and the following fifty-six bytes can be used as arguments.
The message arguments can contain pointers to memory,
including references to scatter/gather lists. For a hardware
friendly data structure for scatter/gather lists, we propose
Packet Vector Buffers or Pvbufs; these are based on iovec
arrays with the twist that an entry may contain a pointer to
a buffer or another iovec. We also propose accelerator
pipelining where accelerators can be linked together in an
accelerator pipeline such that output from one accelerator is
the immediate input to another. Accelerator pipelines can
be used to create “super accelerators” that run multiple
functions over data in sequence without CPU intervention.

Opportunity
Realizing the dream of widely deployed and useful Domain
Specific Accelerators for networking entails developing
and innovating in the three DSA models. This is a cross
disciplinary effort covering compilers, operating systems
(Linux), CPU ISA, hardware devices and hardware
interconnects. There are many opportunities for OCP
involvement, especially in the accelerator hardware side
and the development of open hardware and interfaces.

2

Figure 2: Example of invoking an accelerator engine. A
function is called to compute the SipHash over some data block.
The SipHash accelerator engine is invoked to perform the hash.

	Introduction
	DSA Models
	Offloads
	Acceleration instructions

	Accelerator Engines
	Opportunity

