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Introduction
Domain  Specific  Accelerators,  (DSAs)  are  specialized
hardware  components  that  accelerate  certain  workloads
within  a  specific  domain  or  application.  The  general
motivation  and  benefits  for  DSA  have  been  well
documented.  In  this  paper,  we  look  at  Domain  Specific
Accelerators  specifically  for  the  domain  of  networking.
Considerations include models,  manifestations,  use cases,
system  design,  software/hardware  integration,  hardware
interfaces, APIs, and programming models.

DSA Models
Domain  Specific  Accelerators  for  networking  can  be
characterized by three basic operational models:

• Offloads
• Acceleration instructions
• Accelerator engines

For  each  of  these  models  we  consider  the  programming
model, hardware interaction, benefits and disadvantages, as
well  as  opportunities  for  development.  The three  models
are complementary and can be combined to work in tandem
in a hybrid accelerator system model as shown in Figure 1. 

Offloads
Offload acceleration, or just offloads, is an early form of
DSA. Almost  every  commercial  NIC (Network  Interface
Card) in existence offers some form of offload. The basic
idea is that functionality running in the host CPU is run in a
hardware  device  instead.  Use  cases  of  offloads  include
checksum  offload,  TCP  segmentation  offload,  receive
coalescing, TLS offload, and TCP offload.
The programming model of offloads is a “tail call” from a
program running in a host CPU to a device,  or from the
device to the host CPU. In the networking transmit path,
instructions to request offloaded functions are specified in a
transmit descriptor, the descriptor is then interpreted by the
NIC and the requested offload processing is performed (for
instance,  computing  and  setting  the  TCP  checksum).
Receive offload works in reverse,  the NIC autonomously
performs  offload  processing  on  received  packets  and
reports results in receive descriptors (for instance, the ones’
complement sum over the packet for verifying checksums).
The  advantage  of  offloads  is  its  simple  programming
model-- the details of an offload are easily abstracted from
the programmer by a device driver. 

A  disadvantage  of  offloads  is  that  there’s  no  means  to
leverage  offload  functionality  outside  of  the  networking
path with any granularity.  For instance,  if  a  NIC has an
encryption  engine  it  can  only  be  used  in  the  context  of
sending a packet, a CPU program can’t call the engine to
encrypt an arbitrary block of host memory.
Deployment  and  ubiquity  of  offloads  is  underwhelming,
and only a few simple offloads like checksum offload have
been  widely  deployed.  The impediment  is  that  hardware
offloads are only approximations of software functionality;
even  small  discrepancies  in  functionality  might  lead  to
nondeterministic or incorrect behaviors. This motivates us
to define the “fundamental requirement of offloads”:

The functionality of a hardware offload must be  exactly
the same as that in the CPU software being offloaded

While  the  fundamental  requirement  is  easily  stated,  that
begs the obvious question:  How can this  requirement  be
met? Our answer is:

Run the same code in the CPU and the offload target!
Programmable  devices  are  an  enabler.  We  can  infer  an
offload is viable if the same program code runs in both the
host CPU and the device. Specifically, we would generate
two images from the same base source code, one that runs
in the CPU and one that runs in the offload device. There
are  some  caveats:  offload  interfaces  are  still  needed,
resource limitations of the offload device must be taken in
account, and a method is needed to query an offload  device
to see if the program to be offloaded has been loaded.

Acceleration instructions
Acceleration  instructions are  effectively  Domain Specific
Instructions. These are CPU instructions that can be output
by a compiler  in  a  CPU executable  binary.  Examples  of
acceleration instructions for networking are AES and CRC
instructions. Open Instruction Set Architecture (ISA), like
that of RISC-V, facilitates custom acceleration instructions.
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Figure 1: Example system architecture for accelerators. This 
diagram shows a hybrid accelerator model that employs offloads, 
accelerator instructions, and accelerator engines.



The  advantage  of  acceleration  instructions  is  the  simple
programming model. Typically, the instructions are used in
the back end of library functions such that the programmer
doesn’t  even  know  they’re  using  them.  Acceleration
instructions work best on data already in the CPU cache,
with  functions  that  don’t  require  a  lot  of  state.  The
disadvantage of acceleration instructions is that they need
to be implemented in the CPU, and modifying a CPU may
require licensing the ISA, standardizing new instructions,
and compiler support for new instructions.
We have developed two sets of acceleration instructions for
networking: DISC (Dynamic Instruction Set Computer) and
parser instructions.
DISC defines a general acceleration instruction that can be
used to support a large class of custom accelerations. The
DISC opcode includes a function number as an immediate
operand. The function number is dynamic and is mapped to
a hardware function at runtime. As an example,  the code
below uses DISC instructions to compute a SipHash over
sixty-four bytes. Performance is 97 cycles for RISC-V with
DISC instructions, versus 793 cycles for x86.
// Load first thirty-two bytes into regs a0-a3
ld a0, 0(a9); ld a1, 8(a9); ld a2, 16(a9); ld a3, 24(a9)
li a4, 64 // Set length
mv a5,a10; mv a6, a11 // Set up keys
disc a8,siphash_start$7 // Hash 32 bytes
ld a0, 32(a9); ld a1, 40(a9)
disc a8,siphash_round$7 // Hash 16 bytes
ld a0, 48(a9); ld a1, 56(a9) 
disc a8,siphash_end2$1 // Hash final 16 bytes
Parser  instructions  implement  high  performance  protocol
parsing in a CPU. They abstract out common functions of
parsing  into  instructions,  where  each  instruction  can
perform  multiple  sub-functions  and  leverage  gate  level
parallelism for high performance.  The code below shows
an example for parsing the IPv4 header and extracting the
IP  addresses  as  metadata.  Performance  is  17  cycles  for
RISC-V with parser instructions, versus 77 cycles for x86.
prs.load.b paccum, pcurptr
prs.cmpi.h.stop paccum[1], 4 // Check IP version
prs.lensetmin.n pcurhdr, paccum[1], 4:20 // Hdr len
prs.load.b paccum, pcurptr+9
prs.cam.b pnext, paccum[0], 3 // Set up next proto
prs.load.h paccum, pcurptr+6
prs.load paccum, pcurptr+16 // Save addresses
prs.store.stp pframe+32, paccum
Accelerator Engines
Accelerator engines are external IP blocks that are accessed
by the CPU over an accelerator interconnect such as BoW
and AXI interfaces. Accelerator engines provide a message
based interface that allows a CPU to make requests and get
responses.  The programming model  is  a  type  of  Remote
Procedure  Call  (RPC).  Figure  2  shows  an  example
processing flow for invoking an accelerator engine.

The  advantage  of  accelerator  engines  is  the  RPC-like
programming model  which allows a lot  of  granularity  in
invoking  functions.  Ironically,  this  advantage  is  also  its
disadvantage--  allowing  a  CPU  to  interact  directly  with
accelerator  hardware  opens  the  specter  of  isolation  and
security issues.  These issues might be manageable in the
kernel, but that would entail significant overhead in making
system calls to perform accelerations. For lowest overhead
and  highest  performance,  we  want  to  invoke  accelerator
engines  directly  from  user  space  applications,  but  that
requires a lot of infrastructure for security and isolation. As
suggested in Figure 1, one solution is to invoke accelerator
engines from Domain Specific CPUs in a closed and secure
environment (like an App CPU in a SmartNIC).
A  standard  and  open  API  is  critical  to  the  success  of
accelerator engines, and so we propose a simple message
format  for  accelerator  request  and replies.  This  common
format defines  a  sixty-four byte message,  where the first
sixty-four bits hold a control header for message delivery,
and the following fifty-six bytes can be used as arguments.
The message arguments can contain pointers to memory,
including references to scatter/gather lists. For a hardware
friendly data structure for scatter/gather  lists,  we propose
Packet Vector Buffers or  Pvbufs; these are based on iovec
arrays with the twist that an entry may contain a pointer to
a  buffer  or  another  iovec.  We  also  propose  accelerator
pipelining  where accelerators can be linked together in an
accelerator pipeline such that output from one accelerator is
the immediate input to another.  Accelerator pipelines can
be  used  to  create  “super  accelerators”  that  run  multiple
functions over data in sequence without CPU intervention.

Opportunity
Realizing the dream of widely deployed and useful Domain
Specific  Accelerators  for  networking  entails  developing
and innovating in the three DSA models. This is  a cross
disciplinary effort  covering  compilers, operating systems
(Linux),  CPU  ISA,  hardware  devices  and  hardware
interconnects.  There  are  many  opportunities  for  OCP
involvement,  especially  in  the  accelerator  hardware  side
and the development of open hardware and interfaces.
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Figure 2: Example of invoking an accelerator engine. A 
function is called to compute the SipHash over some data block. 
The SipHash accelerator engine is invoked to perform the hash.
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